МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

УТВЕРЖДАЮ: И.о. проректора по учебной работе Φ .Д. Кодзоева « 30_» июня 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

<u>Б1.О.07.01</u> _Механика	
(индекс дисциплины по учебному плану, наименование дисциплины (модуля))
Направление подготовки – <u>03.03.02 Физика</u>	
(код, наименование)	
Направленность: <u>Физика</u>	
Квалификация выпускника — Бакалавр	
Форма обучения Очная	

1. Цели освоения дисциплины

Целями освоения дисциплины Б1.О.07.01 Механика являются формирование у обучающихся знаний об основных физических законах, принципах и механизмах их действия, границ их применимости, выработки основ естественнонаучного мировоззрения, приобретения навыков работы с приборами и оборудованием современной физической лаборатории, использования различных методик физических измерений и обработки экспериментальных данных, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

№	Код	Наименование области профессиональной деятельности.
Π/Π	профессионального	Наименование профессионального стандарта
	стандарта	
01 O	бразование и наука	
1.	01.001	Профессиональный стандарт «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 18 октября 2013 г. № 544н(зарегистрирован Министерством юстиции Российской Федерации 6 декабря 2013 г., регистрационный №30550), с изменением, внесенным приказом Министерства труда и социальной защиты РФ от 5 августа 2016г.№422н (зарегистрирован Министерством юстиции РФ 23 августа2016г., регистрационный № 43326)
2.	01.003	Профессиональный стандарт «Педагог дополнительного образования детей и взрослых», утвержденный приказом Министерства труда и социальной защиты РФ от 5 мая 2018г. № 298н (зарегистрирован Министерством юстиции РФ 28 августа 2018г., регистрационный № 52016

Формируемые дисциплиной знания и умения готовят выпускника данной образовательной программы к выполнению следующих обобщенных трудовых функций:

Код и	(Обобщенные трудовые ф	ункции	Трудов	ые фун	кции
наименование профессионально го стандарта	Код	Наименование	Уровень квалифи кации	Наименование	Код	Уровень (подуровень) квалификац ии
01.001 Педагог (педагогическая деятельность в		Педагогическая деятельность по проектированию и		Общепедагогичес кая функция. Обучение	A/01.6	6
дошкольном, начальном общем, основном общем,	A	реализации образовательного процесса	6	Воспитательная деятельность	A/02.6	6
среднем общем образовании) (воспитатель, учитель)		образовательных организациях дошкольного, начального общего, основного общего, среднего общего образования		Развивающая деятельность	A/03.6	6
	В	Педагогическая деятельность по проектированию и реализации основных общеобразовательных программ	6	Педагогическая деятельность по реализации программ основного и среднего общего образования	B/03.6	6

Перечень задач профессиональной деятельности выпускников:

Область	Типы задач	Задачи	Объекты
профессиональной	профессиональной	профессиональной	профессиональной
деятельности	деятельности	деятельности	деятельности (или
(по Реестру			области знания)
Минтруда)			
01 Образование	Педагогический	Разработка и реализация	Образовательные
		образовательных	программы и
		программ СПО и	образовательный
		программ ДО	процесс в системе СПО
			и ДО
06 Связь,	Научно-	Исследование,	Информационные
информационны	исследовательск	разработка, внедрение	процессы, технологии,
еи	ий	и сопровождение	системы и сети, их
коммуникацион		информационных	инструментальное
ные технологии		технологий и систем	(программное,
ные технологии			техническое,
			организационное)
			обеспечение, способы
			6 и методы
			проектирования,
			отладки, производства
			и эксплуатации
			информационных
			технологий и систем в
			различных областях и
			сферах цифровой
			экономики

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Механика» относится к модулю «Общая физика» обязательной части цикла (Б1.О.07.01). Дисциплина изучается на 1 курсе в 1 семестре.

Таблица 2.1. Связь дисциплины «Механика» с предшествующими дисциплинами и сроки их изучения

Код	Дисциплины,	предшествующие	дисциплине	Семестр
дисциплины	«Механика»			
	Физика			школьный курс
	Математика			школьный курс

Таблица 2.2. Связь дисциплины «Механика» с последующими дисциплинами и сроки их изучения

Код дисциплины	Дисциплины, «Механика»	следующие	за	дисциплиной	Семестр
Б1.О.07.02	Молекулярная	физика			2

Б1.В.03	Методика преподавания физики	6
Б1.О.16	Теоретическая механика.	4

Таблица 2.3. Связь дисциплины «Механика» со смежными дисциплинами

Код дисциплины	Дисциплины, смежные с дисциплиной «Механика»	Семестр
Б1.В.11	Практический курс элементарной физики	1
Б1.О.04.01	Математический анализ	1

3. Результаты освоения дисциплины (модуля) «Механика»

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по данному направлению:

			_
Код	Наименование	Индикатор достижения	В результате освоения
компетен-	компетенции	компетенции	дисциплины обучающийся
ЦИИ		(закрепленный за дисциплиной)	должен:
УК-2	Способен	УК-2.1. Определяет круг	Знать теоретические
	определять круг	задач в рамках поставлен	основы, основные понятия,
	задач в рамках	ной цели, определяет связи	законы и модели основных
	поставленной цели	между ними;	разделов физики;
	и выбирать	УК-2.2. Предлагает способы	Уметь понимать, излагать
	оптимальные	решения поставленных задач и	и критически
	способы их	ожидаемые результаты;	анализировать физическую
	решения, исходя из	оценивает предложенные	информацию.
	действующих	способы с точки зрения	Пользоваться
	правовых норм,	соответствия цели проекта;	теоретическими основами,
	имеющихся	УК-2.3. Планирует	законами и моделями
	ресурсов и	реализацию задач в зоне	физики;
	ограничений	своей ответственности с	Владеть физическими и
		учетом имеющихся ресурсов	математическими
		и ограничений, действующих	методами обработки и
		правовых норм;	анализа информации в
			области основных
			разделов физики.
ОПК-1	Способен применять	ОПК-1.1. Обладает базовыми	Знает физические основы
	базовые знания в	знаниями в области физико-	механики, молекулярной
	области физико-	математических наук,	физики, природу
	математических и	необходимыми для решения	колебаний и волн, основы
	естественных наук в	профессиональных задач.	термодинамики,
	сфере своей	ОПК-1.2. Аргументированно	электричества и
	профессиональной	применяет физические законы	магнетизма, оптики,
	деятельности.	и математические методы для	основы атомной и
		решения задач теоретического	ядерной физики,
		и прикладного характера.	понимает широту и
		ОПК-1.3. Обладает навыками	ограниченность

теоретического и применения физики экспериментального исследованию процессов и явлений в природе и исследования объектов обществе. профессиональной деятельности, решения Умеет использовать профессиональных задач в теоретические знания при области физики и смежных с объяснении результатов ней естественнонаучных экспериментов, дисциплин. применять знания в области физики для освоения общепрофессиональных дисциплин и решения профессиональных задач, оценивает достоверность полученного решения задачи. Владеет навыками физических исследований, способен передавать результат проведенных исследований в виде конкретных рекомендаций в терминах предметной области знания. ПК -3 Готовность ПК-3.1. Понимает физические Владеть: методами применять на основы методов и средства нахождения, отбора и преобразования информации, практике объединения различных профессиональные обмена информацией на методов проведения знания теории и расстоянии с помощью физических исследований. методов физических радиоэлектронных средств и Уметь: осмысленно исследований технологий. выбирать научный метод ПК-3.2. Владеет методологией проведения физических исследований. математического моделирования физических Знать: способы процессов и объектов на базе определения видов и типов как стандартных пакетов профессиональных задач, а автоматизированного также методы их решения проектирования и при проведении исследований, так и физических исследований самостоятельно создаваемых оригинальных программ. ПК-3.3. Применяет цифровую технику при обработке данных при соблюдении основных требований информационной безопасности. ПК-3.4. Применяет современные информационные средства при подготовке данных при составлении обзоров, отчетов и научных публикаций.

4. Структура и содержание дисциплины (модуля) «Механика»

4.1. Структура дисциплины (модуля) «Механика»

Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часов.

Курс	1
Семестр	1
Всего учебных часов трудоемкости	252 ч
Всего аудиторных часов,	182 ч
в том числе: Лекции	54 ч
Практических занятий	64 ч
Лабораторных занятий	64 ч
Самостоятельная работа студентов	16
Форма контроля	Экзамен

№ п/п				стоя	тель	бной ную (в ча	pa						ваем <i>стра</i>	ости	,	no		роля <i>елям</i> чной
			Кон	такт	гная	рабо		Сам рабо		ятель	ная		ма стаці	ни (<i>п</i>				чнои
Наименование разделов и тем дисциплины (модуля)	семестр	Всего	Лекции	Практические занятия	Лабораторные занятия	Др. виды контакт. работы	Всего	Курсовая работа(проект)	Подготовка к экзамену	Другие виды	Собеседование	Коллоквиум	Проверка тестов	Проверка контрольн. работ	Проверка реферата	Проверка эссе и иных творческих работ	курсовая работа (проект) пр.	
1.	Кинематика материальной	í TO	чки															
1.1.	Основные понятия кинематики. Механическое лвижение.	1	2	1	1		1			1			+	+	+			
1.2.	Линейные кинематические характеристики движения	1	4	1	1	2	1			1					+			
1.3	Угловые кинематические характеристики движения	1	4	1	1	2	1					+						
1.4	Ускорение при криволинейном движении	1	4	1	1	2	1					+		+				
1.5	Закон сложения скоростей в классической механике	1	2	1	1		1							+				
2.	Кинематика твердого тела																	
2.1.	Модель «Абсолютно твёрдое тело»	1	3	1	2		1			2			+					
2.2	Поступательное движение твёрдого тела	1	6	2	2	2	2								+	+		
2.3.	Вращательное движение твердого тела	1	5	2	1	2	2			2			+	+				
2.4	Плоское движение твёрдого тела	1	2	1	1		1							+				

3.	Динамика материальной т	очк	и															
3.1	Принцип инерции. Сила	1	5	1	2	2	1								+			
3.2	Законы Ньютона	1	3	1	2		1			1			+		+			
		1	3	1			1			1			Т		_			
	Ограничения применимости II																	
	закона Ньютона. Определение	1	5	1	2	2	1							+	+	+		
	импульса материальной точки.																	
3.4	Третий закон Ньютона	1	2	1	1		1						+					
3.5	Силы в механике	1	6	2	2	2	2			1			+			+		
3.6	Принцип относительности	1	_															
	Галилея	1	2	1	1		1							+	+			
4	Динамика твердого тела			1														
4.1	Центр масс. Теорема о центр	1	2	1			1											
4.1	масс.	1	3	1	2		1						+					
	Определения: Момент силы																	
	относительно некоторой																	
4.2	точки, момент импульса	1	5	1	2	2	1			1			+		+			
	материальной точки, момент																	
	импульса твердого тела																	
	Уравнение моментов: а) для																	
4.3	одной материальной точки и б)	1	5	1	2	2	1			1				+		+		
۲.5	для системы материальных	1		1		_	1			1				-		「		
	точек				ļ													
	Вращение твердого тела			1.		l .												
4.4	относительно закрепленной	1	6	2	2	2	2			1		+		+				
	оси. Момент инерции.																	
	Динамика плоского движения																	
4.5	твёрдого тела. Система центра	1	3	1	2		1			1				+				
	масс.																	
5	Законы сохранения в механи	ке.				_							1					
5.1	Закон сохранения импульса	1	5	1	2	2	2								+	+		
5.2	Реактивное движение.	1	2	1	1		1								+			
	Уравнение Мещерского.			<u> </u>	<u> </u>		<u> </u>								<u> </u>			
5.3	Закон сохранения момента	1	3	1	2		2							+	+			
	импульса					_								<u> </u>	<u> </u>			
5.4	Работа силы	1	6	2	2	2	2						+					
5.5	Механическая энергия	1	3	1	2		1					+				+		
	Кинетическая энергия.																	
5.6	Теорема о кинетической	1	2	1	1		1								+			
	энергии.						1											
5.7	Кинетическая энергия	1	2	1	1		1								+			
	твердого тела.			<u> </u>	ļ <u> </u>		Ļ								ļ .			
	Потенциальная энергия.																	
	Случаи гравитационного																	
5.8	взаимодействия,	1	2	1	1		1					+		+	+			
	электростатического	_					1											
	взаимодействия и упругой																	
	деформации					-	1											
5.9	Связь силы и потенциальной	1	2	1	1		1					+						
	энергии						1											
5.10	Закон сохранения	1	4	1	1	2	1					+		+				
	механической энергии																	
6	Пример применения основнь	IX 38				ики.		рось	соп.	I	l	I	Ι	l	Ī		ı	
6.1	Основные понятия	1	2	1	1		1						+					

6.2	Гиродеоницеонно оффекти	1	4	1	1	2	1										
7	Гироскопические эффекты	1	4	1	1		1						+				
- Measure reviewing																	
7.1	Гармонические колебания и их представление.	1	4	2	2		2					+				+	
7.2	Маятники	1	2	1	1		1						+		+		
7.3	Сложение гармонических колебаний. Фигуры Лиссажу.	1	4	1	1	2	1						+		+		
7.4	Затухающие и вынужденные колебания. Резонанс	1	2	1	1		1							+	+		
8	Механика жидкостей и газ	80B.															
8.1	Идеальные и реальные жидкости и газы.	1	2	1	1		1					+					
8.2	Уравнение неразрывности. Уравнение Бернулли.	1	5	1	2	2	1					+				+	
8.3	Обтекание тел жидкостью и газом.	1	2	1	1		1							+	+		
9	Релятивистская механика	(Сп	ециа	алы	ная т	геор	ия	отн	осит	гель	ност	ги).					
9.1	Пространство и время в Галилеевой теории относительности.	1	2	1	1		1			1		+					
9.2	Постулаты Эйнштейна теории относительности. Выводы следствий из постулатов.	1	2	1	1		1 1					+					
9.3	Кинематика специальной теории относительности. Формулы преобразования Лоренца.	1	2	1	1		1			1		+					
9.4	Интервал между событиями. Причинно- следственная связь между событиями. Динамика СТО.	1	2	1	1		1					+					
10	Волновая механика.																
10.1	Понятие волны. Уравнение плоской волны.	1	3	2	1		2			1			+			+	
10.2	Вектор плотности потока энергии (вектор Умова). Интерференция и дифракция волн.	1	2	1	1		1								+		
10.3	Стоянна волин Звуковию	1	2	1	1		1			1			+	+			
10.4	Эффакт Поннара	1	4	1	1	2	1						+		+		
	всего:	252	182	54	64	64	54	16		16							 _
																_	

4.2. Содержание дисциплины (модуля) «Механика»

Механика Ньютона. Введение.

1. Кинематика материальной точки

- 1.1 Основные понятия кинематики. Механическое движение, материальная точка, система отсчета, траектория. Векторы. Радиус-вектор. Единичный вектор. Скалярное и векторное произведение
- 1.2 Линейные кинематические характеристики движения.
- 1.2.1 Радиус вектор
- 1.2.2 Путь
- 1.2.3 Перемещение
- 1.2.4 Скорость. Определения средняя скорость, мгновенная скорость, равномерное движение
- 1.2.5 Ускорение. Равнопеременное движение.
- 1.3 Угловые кинематические характеристики движения
- 1.3.1 Угловое перемещение
- 1.3.2 Угловая скорость
- 1.3.3 Угловое ускорение
- 1.4 Ускорение при криволинейном движении
- 1.5 Закон сложения скоростей в классической механике

2. Кинематика твердого тела

- 2.1 Модель «Абсолютно твёрдое тело»
- 2.2 Поступательное движение твердого тела
- 2.3 Вращательное движение твёрдого тела
- 2.4 Плоское движение твёрдого тела

3. Динамика материальной точки

- 3.1 Принцип инерции. Сила
- 3.2 Первый закон Ньютона
- 3.3 Второй закон Ньютона. Ограничения применимости II закона Ньютона. Определение импульса материальной точки.
- 3.4 Третий закон Ньютона
- 3.5 Силы в механике.
- 3.5.1 Силы всемирного тяготения.
- 3.5.2 Упругие силы.
- 3.5.3 Силы трения
- 3.5.4 Сила Лоренца
- 3.6 Принцип относительности Галилея

4. Динамика твердого тела

- 4.1 Центр масс. Теорема о центре масс.
- 4.2 Определения: Момент силы относительно некоторой точки, момент импульса материальной точки, момент импульса твердого тела
- 4.3 Уравнение моментов: а) для одной материальной точки и б) для системы материальных точек
- 4.4 Вращение твердого тела относительно закрепленной оси. Момент инерции.
- 4.4.1 Осевой момент импульса
- 4.4.2 Основное уравнение вращательного движения
- 4.5 Динамика плоского движения твёрдого тела. Система центра масс.

5. Законы сохранения в механике.

- 5.1 Закон сохранения импульса
- 5.2 Реактивное движение. Уравнение Мещерского.
- 5.3 Закон сохранения момента импульса
- 5.4 Работа силы
- 5.5 Механическая энергия
- 5.6 Кинетическая энергия. Теорема о кинетической энергии.
- 5.7 Кинетическая энергия твердого тела.
- 5.8 Потенциальная энергия. Случаи гравитационного взаимодействия, электростатического взаимодействия и упругой деформации

- 5.9 Связь силы и потенциальной энергии
- 5.10 Закон сохранения механической энергии

6. Пример применения основных законов механики. Гироскоп.

- 6.1 Основные понятия
- 6.2 Гироскопические эффекты

7. Механические колебания.

- 7.1 Гармонические колебания и их представление.
- 7.2 Маятники
- 7.3Сложение гармонических колебаний. Фигуры Лиссажу.
- 7.4 Затухающие и вынужденные колебания. Резонанс

8. Механика жидкостей и газов.

- 8.1 Идеальные и реальные жидкости и газы. Уравнение движения идеальной жидкости (уравнение Эйлера).
- 8.2 Уравнение неразрывности. Уравнение Бернулли. Течение вязкой жидкости. Формула Пуазейля. Число Рейнольдса.
- 8.3 Пограничный слой. Обтекание тел жидкостью и газом. Отрыв потока. Лобовое сопротивление и подъемная сила. Эффект Магнусса. Обтекание тел, движущихся со сверхзвуковой скоростью.

9. Релятивистская механика (Специальная теория относительности).

- 9.1 Пространство и время в Галилеевой теории относительности. Следствия из формул преобразования Галилея.
- 9.2 Постулаты Эйнштейна. Качественный вывод следствий (относительности одновременности, относительности пространственных и временных масштабов) непосредственно из постулатов.
- 9.3 Кинематика специальной теории относительности. Формулы преобразования Лоренца. Следствия из формул преобразования Лоренца. Геометрическое представление СТО. Мир Минковского.
- 9.4 Интервал между событиями. Инвариантность интервала. Причинно-следственная связь между событиями. Динамика СТО. О мере движения. Четырехмерный импульс и второй закон Ньютона. Энергия и масса. Дефект масс.

10. Волновая механика.

- 10.1 Понятие волны. Продольные и поперечные волны. Уравнение плоской волны. Амплитуда, фаза, скорость распространения волны.
- 10.2 Вектор плотности потока энергии (вектор Умова). Интерференция и дифракция волн.
- 10.3 Стоячие волны. Звуковые волны. Скорость звука. Звуковое давление. Энергия звуковых волн.
- 10.4 Эффект Доплера. Источники и приемники звука. Ультразвуки и инфразвуки.

5. Образовательные технологии

При реализации программы дисциплины «Механика» используются различные образовательные технологии:

- при чтении лекций используется мультимедийные технологии и различны наглядные приборы;
- практические занятия проводятся с использованием наглядных приборов, компьютерных классов (компьютерное моделирование);
- самостоятельная работа студентов предусматривает работу под руководством преподавателей в виде консультаций, а также предполагает использование фондов научно-

технической библиотеки, современных информационных технологий с привлечением компьютера как средства управления информацией.

Широко используются в учебном процессе активные и интерактивные формы проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. В рамках учебного курса предусмотрены мастер-классы экспертов и специалистов

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

6.1. План самостоятельной работы студентов

Для получения глубоких и прочных знаний, твёрдых навыков и умений, необходима систематическая самостоятельная работа студента.

В рабочей программе предусмотрена самостоятельная работа для проработки лекционного (теоретического) материала при подготовке к контрольным мероприятиям (в частности к тестированию)

№ нед.	Тема	Вид самостоятельной работы	Задание	Рекомендуемая литература	Количество часов
1-2	Законы сохранения в механике	Работа в библиотеке	Подготовить доклад по теме «Законы сохранения в механике»	3; 4	14
3-4	Примеры применения основных законов механики	Работа в библиотеке, работа в лаборатории	Подготовить доклад на семинаре и/или подготовить и провести лабораторную работу по теме	3; 4	4
5-6	Кинетическая и потенциальная энергия	Работа в	Подготовить доклад по теме «Кинетическая и потенциальная энергия»	2;3	4
7-8	Гироскопиче ский эффект	робото в	Доклад по теме:»Гироскопичес кий эффект»	2;3;4	4

6.2. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа обучающихся является составной частью учебной работы и имеет целью закрепление и углубление

Состав самостоятельной работы:

- 1. Подготовка к лекционным занятиям:
- чтение текста (учебника, первоисточника, дополнительной литературы и т.д.);
- составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста и т.д.;
 - работа с конспектом лекции;
 - подготовка вопросов для самостоятельного изучения
 - 2. Подготовка к практическим (семинарским) занятиям:
 - работа со справочниками и др. литературой;

- заполнение рабочей тетради;
- подготовка мультимедиа презентации и докладов к выступлению на практическом занятии;
- 3. Подготовка к лабораторным занятиям:
- работа со справочниками и др. литературой;
- формирование отчета о выполнении лабораторного занятия;
- подготовка мультимедиа презентации и докладов к выступлению по результатам лабораторного занятия;
 - 4. Подготовка к промежуточной аттестации:
 - повторение всего учебного материала дисциплины
 - аналитическая обработка текста;
 - 5. Прочие виды работ:

научно-исследовательская работа (научная статья, доклад, реферат).

Самостоятельная работа студентов включает следующие компоненты:

N_0N_0	Наименование работы	Кол-во	Форма		
п/п	паименование расоты	часов	контроля		
1	Проработка лекционного материала	37	Экзамен		
2	Подготовка к практическим занятиям	14	Работа у доски; контрольные, самостоятельные работы.		
3	Подготовка к лабораторным работам	19	Допуск к каждой лабораторной работе и защита отчета.		

6.3. Материалы для проведения текущего и промежуточного контроля знаний студентов

Контроль освоения компетенций

$N_{\underline{0}}$	Вид контроля	Контролируемые темы (разделы)	Компетенции,
$\Pi \backslash \Pi$			компоненты которых
			контролируются
1	Коллоквиум	Кинематика материальной точки	ОПК-1, УК-2, ПК-3
2	Коллоквиум	Кинематика твердого тела	ОПК-1, УК-2, ПК-3
3	Коллоквиум	Динамика материальной точки	ОПК-1, УК-2, ПК-3
4	Коллоквиум	Динамика твердого тела	ОПК-1, УК-2, ПК-3
5	Коллоквиум	Законы сохранения в механике	ОПК-1, УК-2, ПК-3
6	Коллоквиум	Применение основных законов	ОПК-1, УК-2, ПК-3
7	Коллоквиум	Гармонические колебания	ОПК-1, УК-2, ПК-3

Материалы для проведения текущего контроля знаний и промежуточной аттестации составляют отдельный документ – Фонд оценочных средств по дисциплине «Механика».

Вопросы для самопроверки и подготовки к промежуточному контролю. Тестовые залания.

- 1. Что называется материальной точкой? В каких случаях наша Земля может быть принята за материальную точку.
 - 2. Что такое система отсчета? Какие бывают системы координат?
- 3. Что такое вектор? Сколькими числами можно выразить вектор в декартовой системе координат?
 - 4. Сложите несколько векторов по правилу многоугольника.

- 5. Что называется разностью двух векторов?
- 6. Чему равно скалярное произведение двух векторов?
- 7. Куда направлен вектор, равный векторному произведению двух векторов?
- 8. Что такое радиус вектор? Как выразить вектор перемещения через радиус-вектор?
- 9. Что такое скорость, если определить ее как скалярную величину?
- 10. Куда направлен и чему равен вектор скорости материальной точки, движущийся по криволинейной траектории, в каждый момент времени?
- 11. Как определить ускорение материальной точки в данный момент времени из графика зависимости скорости переменного движения от времени?
- 12. Каковы математическое определение и реальный способ нахождения радиуса кривизны траектории в данной точке?
- 13. Как меняется величина и направление вектора полного ускорения, если материальная точка, двигаясь по криволинейной траектории, ускоряется, замедляется, движется равномерно.
- 14. Дайте определение угловой скорости и угловому ускорению. Напишите соответствующие формулы. В каких единицах измеряются эти величины.
- 15. Каково определение угловой скорости в данный момент и направление вектора угловой скорости для данного направления вращения материальной точки?
 - 16. Запишите как связана угловая скорость с числом оборотов в секунду, с периодом?
- 17. Как определяется угловое ускорение при неравномерном вращении, куда направлен его вектор?
 - 18. С какой составляющей полного ускорения и как связано угловое ускорение?
- 19. Как полное ускорение выражается через радиус кривизны траектории, угловую скорость и угловое ускорение?
 - 20. Угловые скорость и ускорение, их направление, связь с линейными величинами.
 - 21. Выведите формулу для вычисления угловой скорости при равнопеременном вращении.
 - 22. Выведите формулу для вычисления угла поворота при равнопеременном вращении.
 - 23. Что называется уравнением движения материальной точки?
- 24. Что такое импульс силы материальной точки? Как формируется второй закон Ньютона с использованием этой величины?
- 25. Что такое импульс материальной точки? Как формируется второй закон Ньютона с использованием этой величины?
- 26. Как обобщается третий закон Ньютона для системы взаимодействующих материальных точек?
 - 27. Что такое центр тяжести и центр масс тела (системы материальных точек)?
 - 28. Как находятся координаты центра масс?
- 29. Выведите теорему о движении центра масс системы материальных точек под действием внешних сил, воздействующих на эту систему.
 - 30. Что называется замкнутой системой тел (материальных точек)?
- 31. Получите из второго и третьего законов Ньютона закон сохранения импульса в замкнутой системе.
 - 32. Какие виды сил известны в физике? Какие виды сил рассматриваются в механике?
- 33. Как зависит от скорости движения тела величина силы трения в реальных случаях сухого трения?
- 34. Как зависит от скорости движения тела величина силы трения в идеальном случае сухого трения (закон Кулона-Амонтона)?
 - 35. Как зависит сила трения от скорости в случае жидкого трения?
- 36. Какие силы будут удерживать, а какие стягивать в низ тело на наклонной плоскости при постепенном увеличении от нуля угла, составляющего наклонной плоскостью с горизонтом?
- 37. Какая сила создает центростремительное ускорение при полете искусственного спутника вокруг Земли? Как рассчитать скорость такого спутника?
 - 38. Каково объяснение морских приливов на Земле?
 - 39. чему равна гравитационная энергия шарового сферически симметричного тела?
 - 40. Что такое гравитационный радиус?

- 41. Чему равен гравитационный радиус Земли? Солнца?
- 42. Что такое «черные дыры»
- 43. Как рассчитать первую вторую и третью скорости для планет солнечной системы?
- 44. Как выводятся формулы ускорения Кариолиса в простейшем случае для тела, движущегося равномерно по радиусу вращающегося колеса?
- 45. Как влияет сила Кориолиса на движение воздушных масс, поездов и течение рек в северном полушарии Земли? Куда она направлена?
 - 46. Как вычисляется работа силы, измеряющейся во времени? Мощность такой силы?
- 47. Какие силы называются потенциальными (консервативными)? Какова работа этих сил на замкнутом пути?
 - 48. Что такое диссипативные силы? Приведите примеры таких сил.
- 49. Как определить изменение энергии системы через работу внешних сил, произведенных над телами системы?
- 50. Получите выражение для кинетической энергии тела через работу разгона этого тела до большей скорости.
 - 51. Как в общем случае определить, что такое потенциальная энергия системы тел?
 - 52. Получите выражение для потенциальной энергии упруго сжатой пружины.
 - 53. Сформулируйте и запишите закон сохранения энергии в механике.
 - 54. Сформулируйте всеобщий закон сохранения и превращения энергии в природе.
- 55. Докажите, что при абсолютно упругом центральном ударе двух шаров одинаковой массы шары «обмениваются скоростями».
- 56. Какое движение твердого тела называется поступательным; вращательным; колебательным?
 - 57. Дайте определении момента силы. В каких единицах измеряется момент силы?
- 58. Как определить момент силы, действующий на твердое тело, которое может вращаться вокруг неподвижной оси?
 - 59. Выведите основной закон динамики вращательного движения твердого тела.
- 60. Дайте определение момента инерции. В каких единицах измеряется эта величина? Каков ее физический смысл?
- 61. Чем отличается выражение момента инерции твердого тела и момента инерции материальной точки?
- 62. Выведите выражение для момента инерции однородных по плотности плоского диска, шара, тонкого стержня? Как в этих случаях проходит ось вращения этих тел?
- 63. Как записать основное уравнение вращательного движения через импульс момента силы и момент импульса тела?
 - 64. Сколько может быть моментов инерции у одного и того же тела?
 - 65. Докажите теорему Штейнера.
- 66. Как выводится и читается закон сохранения момента импульса замкнутой системы вращающихся тел?
- 67. Как определить направление вектора момента импульса? Приведите примеры применения закона сохранения момента импульса.
 - 68. Приведите примеры использования гироскопа.
 - 69. Какова кинетическая энергия катящегося цилиндра?
- 70. Как записывается и читается закон Гука в самом общем виде и для конкретных видов деформаций?
 - 71. Каковы размерность и физический смысл модуля Юнга?
 - 72. Что такое коэффициент Пуассона, в каких приделах лежит его значение?
- 73. Вычислите потенциальную энергию упруго деформированной пружины, подчиняющейся закону Гука.
- 84. Какие колебания называются гармоническими? Запишите уравнение гармонических колебаний.
- 85. Как вычисляется скорость и ускорение точки в гармоническом колебании, как они сдвинуты по фазе относительности смещения этой точки?

- 86. Как представить периодическое колебание любой формы в виде суммы гармонических колебаний (ряда Фурье)?
- 87. Запишите второй закон Ньютона для случая гармонических незатухающих колебаний, т.е. дифференциальное уравнение этих колебаний.
- 88. Напишите дифференциальное уравнение, его решение и выражение для частоты и периода колебаний математического маятника.
- 89. Напишите дифференциальное уравнение его решение и выражение для периода колебаний физического маятника.
 - 90. Что называется приведенной длиной физического маятника?
- 91. Напишите дифференциальное уравнение затухающих колебаний. Каков график этих колебаний?
- 92. Нарисуйте, как возникает и выглядит через каждые Т/4 поперечная упругая волна в длинном тонком стержне, если конец стержня заставить гармонически колебаться с периодом Т.
- 93. Что происходит с фазой бегущей волны при отражении волны, когда упругая среда, вдоль которой распространяется волн переходит в более плотную среду?

7. Учебно-методическое и материально-техническое обеспечение дисциплины (модуля) Механика

7.1 Учебная литература:

Основная литература.

- 1. Матвеев А.Н. Механика и теория относительности. Н., ВШ, 1986.
- 2. Хайкин С.Э. Физические основы механики.М.: Наука, 1971.
- 3. Стрелков С.П. Механика. М.Наука, 1975.
- 4. Сивухин Д.В. Курс общей физики., Механика «Наука», М., 1979.
- 5. Сборник задач по общему курсу физики. Механика/ Стоглов С.П. и др. под редакцией Яковлева И.А., 4-ое издание. М., Наука, 1977.
 - 6. Белянкин А.Г., Матвеев А.Н. и др. Методика решения задач механики. М., изд. МГУ,1980.
 - 7. Иродов И.Б. Задачи по общей физики. М., Наука, 1979.
 - 8. Физический практикум. Под ред. Ивероновой В.И., часть 1. М., 1976.
 - 9. Матвеев А.Н., Киселев Д.Ф., Общий физический практикум. Механика. М., ВШ, 1990.
 - 10. Коленков С.Г. Соломахо Г.И. Практикум по физике. Механика. М., Наука, 1990.
 - 11Б.М. Яворский, А.А. Детлаф. Курс физики». Издательство «Высшая школа», М., 2001.
 - 12.А.Н. Матвеев, Д.Ф. Киселев. Общий физический практикум. МГУ, 1991

7.2 Интернет-ресурсы

Название ресурса	Ссылка/доступ		
Электронная библиотека онлайн «Единое окно к	http://window.edu.ru		
образовательным ресурсам»			
«Образовательный ресурс России»	http://school-collection.edu.ru		
Федеральный образовательный портал:	http://www.edu.ru		
учреждения, программы, стандарты, ВУЗы, тесты			
ЕГЭ, ГИА			
Федеральный центр информационно-	http://fcior.edu.ru		
образовательных ресурсов (ФЦИОР)			
Русская виртуальная библиотека	http://rvb.ru		
Еженедельник науки и образования Юга России	http://old.rsue.ru/Academy/Archive		
«Академия»	<u>s/Index.htm</u>		
Научная электронная библиотека «e-Library»	http://elibrary.ru/defaultx.asp		

Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru
Электронно-справочная система документов в	http://www.informio.ru
сфере образования «Информио»	
Информационно-правовая система «Консультант-	Сетевая версия, доступна со всех
плюс»	компьютеров в корпоративной сети
	ИнгГУ
Электронно-библиотечная система «Юрайт»	https://www.biblio-online.ru

7.3. Программное обеспечение

- 1. Microsoft Windows 7, Windows 8, Windows 8.1, Windows 10
- 2. Microsoft Windows server 2003, 2008, 2012, 2016
- 3. Microsoft Office 2007, 2010, 2016
- 4. Антивирусное ПО Kaspersky endpoint security
- 5. Справочно-правовая система "Консультант"
- 6. Операционная система Microsoft Windows XP Professional.
- 7. Пакет прикладных программ Microsoft Office 2003 Professional.
- 8. Программный продукт «Антивирус Касперского».
- 9. Программный продукт FineReader 7.0 Professional Edition.
- 10. Программный продукт МАТLAB 6.

7.4. Материально-техническое обеспечение

Для чтения лекций используются при необходимости мультимедиа-проекторы, ноутбуки, набор таблиц и слайдов, комплект оборудования для проведения демонстраций физических опытов.

Кафедра "Общей физики» имеет следующие лаборатории для проведения занятий по оптике:

- 8.1. (Ауд.01, 02, 03, 04, 05) Лаборатории кафедры Общей физики, предназначенных для выполнения лабораторных работ.
- 8.2. (*Ауд.304*) Дисплейный класс (12 компьютеров, объединенных в локальную сеть) для контрольного тестирования знаний, а также выполнения математических расчетов.
 - 03 лаборатория механики и молекулярной физики
 - 1. Штангенциркуль
 - 2. Микрометр
 - 3. Металлическая линейка
 - 4. Рычажные весы
 - 5. Маятник Обербека
 - 6. Секундомер
 - 7. Трифилярный подвес
 - 8. Универсальный маятник
 - 9. Установка для изучения деформаций растяжения и изгиба
 - 10. Набор пружин и грузов
 - 11. Прибор для определения скорости звука в воздухе

Рабочая программа дисциплины «Механика» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки <u>03.03.02 Физика</u>, утвержденного приказом Министерства образования и науки Российской Федерации от « 07 » августа 2020 г. № 920.

Программу составил: к.ф-м.н., ст.преподаватель кафедры «Физика» А. М. Евлоев

Программа одобрена на заседании кафедры «Физика» Протокол № 10 от «20» июня 2022 года

Программа одобрена Учебно-методическим советом физико-математического факультета Протокол N 10 от «22» июня 2022 года

Программа рассмотрена на заседании Учебно-методического совета университета Протокол № 10 от « 29 » июня 2022 г.

Сведения о переутверждении программы на очередной учебный год и регистрации изменений

Учебный год	Решение кафедры (№ протокола, дата)	Внесенные изменения	Подпись зав. кафедрой