МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра химии

УТВЕРЖДАЮ
Проректор но учебной работе
Батыгов 3.О.
20 18 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ТЕХНИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ПИЩЕВЫХ ПРОДУКТОВ

Факультет: химико-биологический

Направление подготовки /специальность: 04.05.01

Фундаментальная и прикладная химия

Программа: специалитет

Квалификация (степень) выпускника: Химик. Преподаватель химии

Форма обучения: очная

Составители рабочей программы
доцент, к.т.н. Доској / Бокова Л.М. /
Рабочая программа утверждена на заседании кафедры хишии
Протокол заседания № 6 от «24 » annelse 20 15 г.
Заведующий кафедрой
Воев / Султыгова З.Х. /
Рабочая программа одобрена учебно-методическим советом
химико-биологическогофакультета
Протокол заседания № $\frac{1}{1}$ от « $\frac{23}{1}$ » annexes $\frac{20}{10}$ г.
Председатель учебно-методического совета
Заведующий кафедрой /2/сбт/ Плиева А.М. /
· And
Программа рассмотрена на заседании Учебно-методического совета университета
протокол № <u>5 от «23 » мал 20 18 г.</u>
Председатель Учебно-методического совета университета
Протокея поседания № 3 от «23.
Предсенения и учествения станической СПО ДОСКУ Хашагульгов Ш.Б. /

sportikar No 5 or a 2 hr ellar

Председенень Зачебно-методического совет

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Технология и физико-химические методы исследования пищевых продуктов» являются:

- подготовка специалистов, в полной мере владеющих основами аналитической химии, ее методами;
- подготовка специалистов, способных принимать участие в аналитическом контроле пищевых производств;
- обучение студентов теоретическим и практическим основам химических, физико-химических и физических методов количественного анализа и идентификации веществ;
- освоение студентами теоретических и практических основ классической аналитической химии и физико-химических методов анализа;
 - развитие у студентов химического и профессионального мышления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Технология и физико-химические методы исследования пищевых продуктов» относится к вариативной части дисциплин по выбору; изучается в 8 семестре. Информационно и логически связана со следующими дисциплинами: неорганическая химия, аналитическая химия, органическая химия, физическая химия, физические методы исследования, химические основы биологических процессов, физика, математика.

Таблица 2.1.

Связь дисциплины «Технология и физико-химические методы исследования пищевых продуктов» с предыдущими дисциплинами и сроки их изучения

Код	Дисциплины, предшествующие дисциплине	•
дисциплины	«Технология и физико-химические методы	изучения
	исследования пищевых продуктов»	
Б1.Б.6	Математика	1-4
Б1.Б.7	Физика	1-4
Б1.Б.12	Неорганическая химия	1,2
Б1.Б.13	Аналитическая химия	3,4
Б1.Б.14	Органическая химия	5,6
Б1.Б.15	Физическая химия	5,6
Б1.Б.16	Химические основы биологических процессов	6
Б1.Б.20	Физические методы исследования	8

Таблица 2.2.

Связь дисциплины «Технология и физико-химические методы исследования пищевых продуктов» с последующими дисциплинами и сроки их изучения

	Дисциплины, последующие дисциплине «Технология и физико-химические методы исследования пищевых продуктов»	<u>.</u>
Б1.В.ДВ.2	Методы органического синтеза	9
Б1.В.ОД.4	Теоретические основы неорганической химии	9

В результате освоения дисциплины обучающийся должен

знать:

- место аналитической химии в системе наук;
- существо реакций и процессов, используемых в аналитической химии.

уметь:

- применять в практической деятельности химические методы анализа для контроля качественного и количественного состава веществ;
- проводить анализ многокомпонентных смесей;

владеть:

- методологией выбора методов анализа, иметь навыки их применения;
- основами теории аналитической химии;
- навыками химического эксперимента, основными аналитическими методами исследования химических веществ и материалов;
- навыками работы на современной учебно-научной аппаратуре при проведении химического эксперимента;
- методами оказания первой помощи при несчастных случаях в химической лаборатории

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ.

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки:

- а) общекультурных (ОК) ОК-6;
- б) общепрофессиональных (ОПК) ОПК-5;
- **б)** профессиональных (ПК) ПК-1, ПК-2.

Таблица 3.1.

Матрица связи компетенций, формируемых на основе изучения дисциплины «Методы органического синтеза», с временными этапами освоения ее содержания

Коды	Компетенция	Семестр
компетенций		изучения
(ФГОС)		
OK-6	Готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения	8
ОПК-5	Способность к поиску, обработке, анализу научной информации и формулировке на их основе выводов и предложений	8
ПК-1	Способность проводить научные исследования по сформулированной тематике и получать новые научные и прикладные результаты	8
ПК-2	Владение навыками использования современной аппаратуры при проведении научных исследований	8

4. ОБЪЕМ ДИСЦИПИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Таблица 4.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего	8
	часов	семестр
Общая трудоемкость дисциплины	144	144
Аудиторные занятия	86	86
Лекции	28	28
Лабораторные занятия	56	56
Контроль самостоятельной работы (КСР)	2	2
Самостоятельная работа студентов (СРС)	58	58

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Таблица 5.1.

Структура и содержание дисциплины

№№ п/п	Раздел дисциплины	Се ме- ст р	Нед еля семе стра	Виды учебной работы, включая самостоятельную работу и трудоемкость (в часах)		Формы текущего контроля успеваемос ти (по семестрам)	
				лекц	лаб. раб.	Сам .раб	
1.	Задачи и перспективы аналитической химии пищевых продуктов	8	1	2	-	6	
2.	Некоторые аспекты применения физи ческих и физико-химических методов для анализа пищевых продуктов.	8	2	2	-	6	
3.	Методы количественного анализа основанные на измерении количества реактива, израсходованного на реакцию с определяемым ионом- кислотно-основное титрование;-окислительно-восстановительное титрование;-осадительное; -комплексонометрическое	8	3-4	4	4	6	
4.	Электрохимические методы анализа: -потенциометрические методы анализа кондуктометрический метод анализа. Прямая кондуктометрия. Кондуктометрическое титрование. Полярографический метод анализа. Современные разновидности полярографического анализа. Инверсионная вольтамперометрия. Кулонометрический метод анализа	8	5-6	4	12	6	Тест №1
5.	Оптические методы анализаФотометрический метод анализа -Атомно-абсорбционный анализАтомно-абсорбционная спектроскопия с электротермическим способом подготовки пробыАтомно-абсорбционная спектроскопия с подготовкой пробы методом «холодного пара» -Рефрактометрический анализ.	8	7-8	2	18	6	

	-Поляриметрический метод анализа. -Люминесцентный метод анализа. -Нефелометрический и						
	турбидиметрический методы анализа						
6.	Физико-химические методы разделения и концентрированияМетоды маскирования -Методы разделения и концентрирования - Осаждение и соосаждениеэкстракцияэлектрохимические методы разделенияМетоды испаренияХроматографические методы анализа.	8	9,10	4	12	6	Тест №2
7.	Ионометрические методы анализа продуктов пищевой промышленности.	8	11	2	4	6	
8.	Исследование полифенольных соединений методом гель-хроматографии в сочетании с тонкослойной хроматографией и спектрофотометрией.	8	12	2	2	6	
9.	Современные методы определения белка в соках, молоке и других пищевых продуктах.	8	13, 14	4	4	6	
10.	Использование методов математической статистики в аналитической химии.	8	15	2	-	4	
	Итого:			28	56	58	

Таблица 5.2.

Конкретизация результатов освоения дисциплины

ОК-6 Готовность действое	ать в нестандартных ситу	гациях, нести социальную и					
этическую ответственность за принятые решения							
Знать: теоретические осно-	Уметь: следовать этичес-	Владеть: методикой разра-					
вы безопасности жизнеде-	ким и правовым нормам	ботки мероприятий по					
ятельно-сти, средства и	пове-дения; противосто-	борьбе с коррупцией; на-					
методы повышения безопас-		выками делового общения,					
ности социаль-ной среды	ции; использовать знания	меж-личностных отноше- ний, навыками выстраива-					
анатомо-физиологические	педагогики и психологии	ния собственного поведе-					
последствия воздей-ствия на	при решении профессио-	ния с учетом окружения.					

человека трав-мирующих, вредных и пора-жающих факторов; средства и методы борьбы с коррупцией; антропогенные причины совершения ошибок и создания опасных ситуаций; роль сознания и бессознательного в регуляции поведения человека; структуру мотивации и психи-ческой регуляции поведения человека, его деятельности.	нальных задач; разрабатывать мероприятия по повышению безопасности и производственной деятельности; эффективно применять средства защиты от негативных воздействий.	
	поиску, обработке, анали	зу научной информации и
формулировке на их основе вые Знать: основные методы, способы и средства получения, хранения, переработки информации; принципы обработки информации.	уметь: осуществлять по- иск и анализ научной ли- тературы, формулировать выводы и предложения.	Владеть: приемами само- стоятельного составления плана исследования и отчета.
ПК-1 Способность проводит и получать новые научные и п	*	формулированной тематике
Знать: методы экспериментальных исследований в химии, метод регрессионного анализа; методы оптимизации экспериментальных исследований; способы планирования эксперимента; возможности в области использования аппаратуры и оборудования для выполнения исследований.	Уметь: осуществлять выбор оборудования и методик для решения конкретных задач, эксплуатировать современную аппаратуру и оборудование; планировать химический эксперимент; обрабатывать экспериментальные данные.	Владеть: навыками работы с современной аппаратурой и методиками обработки экспериментальных результатов.
ПК-2 Владение навыками и научных исследований Знать: технические данные современной аппаратуры, целью получения достоверных результатов научных исследований.	Уметь: использовать современной ображения использовать современную аппаратуру при проведении научных исследований.	владеть: навыками работы на современной аппаратуре при проведении научных исследований.

Содержание дисциплины

Введение

Задачи и перспективы аналитической химии пищевых продуктов. Значение дисциплины в развитии естествознания, техники, экономики. Основные аналитические проблемы: снижение предела обнаружения; повышение точности и избирательности, экспрессности анализа; анализ без разрушения; локальный анализ; дистанционный анализ.

Некоторые аспекты применения физических и физико-химических методов для анализа пищевых продуктов.

Связь предмета со специальностью. Необходимость контроля качества и безопасности пищевых продуктов и продовольственного сырья.

Методы количественного анализа, основанные на измерении количества реактива, израсходованного на реакцию с определяемым ионом.

Методы титриметрического анализа. Классификация. Требования, предъявляемые к реакциям в титриметрическом анализе. Виды титриметрических определений: прямое, обратное и косвенное титрование. Точность титриметрических определений. Способы выражения концентрации растворов в титриметрическом анализе. Точка эквивалентности и конечная точка титрования. Химические и физико-химические методы установления конечной точки титрования. Стандартизация растворов. Требования к исходным веществам. Метод отдельных навесок и пипетирования.

Кислотно-основное титрование. Метод нейтрализации. Сущность метода. Основные реакции и титранты метода типы кислотно-основного титрования. Индикаторы кислотно-основного титрования. Требования, предъявляемые к индикатарам Показатель титрования рТ. Кривые кислотно-основного титрования. Понятие о потенциометрическом и кондуктометрическом титровании.

Окислительно-восстановительное титрование. Сущьность метода. Классификация редокс-методов. Условия проведения окислительно-восстановительного титрования Физико-химические методы обнаружения конечной точки титрования.

Осадительное титрование. Общая характеристика титриметрических методов осаждения. Класссификацмя методов по природе реагента, взаимодействующего с определяемыми веществами. Индикаторы.

Комплексонометрическое титрование. Реакции комплексообразования, применяемые в титрометрии и требования к ним: скорость реакции, стехиометрия, величина константы устойчивости Комплексометрия. Особенности комплексообразования металлов с ЭДТА. Титрант метода, его приготовление, стандартизация.

Электрохимические методы анализа. Основные понятия и классификация электрохимических методов анализа: по природе источника электрической энергии в системе; по способу применения электрохимических методов; по механизму протекания процессов.

Потенциометрические методы анализа. Сущность и теоретические основы метода. Измерение потенциала. Индикаторные электроды и электроды сравнения. Индикаторные электроды рН-метрии: водородный, хингидронный, стеклянный (устройство электродов, механизм протекающих процессов, уравнения потенциала для указанных электродов). Классификация ионселективных электродов. Прямая и косвенная потенциометрия. Прямая потенциометрия: сущность метода, достоинства и недостатки, область применения. Потенциометрическое титрование (косвенная потенциометрия). Сущность метода. Выбор индикаторного электрода. Типы реакций, лежащих в основе потенциометрического титрования.

Кривые потенциометрического титрования (интегральные, дифференциальные, кривые титрования по методу Грана). Компенсационный и некомпенсационный методы потенциометрического титрования. Применение потенциометрического титрования. Достоинства потенциометрического анализа. Аппаратура для потенциометрического анализа.

Кондуктометрический метод анализа. Теоретические основы метода. Сущность метода. Связь концентрации растворов с электропроводностью. Подвижность ионов. Прямая кондуктометрия. Определение концентрации по данным измерения электропроводности с помощью градуировочного графика и расчетным способом. Кондуктометрическое титрование. Типы кривых кондуктометрического титрования. Установка для проведения кондуктометрических измерений. Понятие о высокочастотном кондуктометрическом титровании.

Полярографический метод анализа. Сущность метода. Электрохимическая ячейка. Полярография – вольтамперометрия на ртутном капающем электроде. Получение и характеристика вольтамперной кривой. Уравнение полярографической волны Ильковича -Гейровского. Потенциал полуволны, факторы, влияющие на его величину. Высота волны. Предельный диффузионный ток. Связь величины диффузионного тока с концентрацией (уравнение Ильковича). Качественный и количественный анализ. Полярографические максимумы, причины их возникновения и способы их устранения. Условия про-ведения полярографического анализа. Определение неорганических и органических соединений. Чувствительность и разрешающая способность метода. Дифференциальная полярография постоянного тока и современные разновидности вольтамперометрии: инверсионная, переменнотоковая вольтамперометрия, хроноамперометрия с линейной разверткой (осциллография); полярография переменного тока с наложением синусоидального и прямоугольного напряжения, импульсная. Рабочие электроды в полярографии и вольтамперометрии: ртутный капающий электрод; твердые стационарные электроды (ртутный, графитовый, металлические), вращающиеся электроды, пленочные, модифицированные электроды. Методы количественных определений: стандартных растворов, градуировочного графика, добавок.

Аппаратура: простейшая полярографическая установка, современные анализаторы. Амперометрическое титрование, сущность метода, область примене-ния и преимущества.

Кулонометрический анализ. Теоретические основы метода. Законы Фарадея. Способы определения количества электричества: хронометрический, графический, с помощью кулонометроПрямая кулонометрия: сущность, применение.

Кулонометрическое титрование: потенциостатическая и гальваническая кулонометрия. Особенности применения и преимущества по сравнению с другими титриметрическими методами. Аппаратура (интеграторы, кулонометры).

Оптические методы анализа

Фотомотрический метод анализа. Сущность метода. Цвет и спектр. Фотоколориметрия, фотоэлектроколориметрия. Сущность методов, достоинства и недостатки, применение. Объединенный закон светопоглощения Бугера — Ламберта — Бера — Бернара. Оптическая плотность (\mathcal{I} или A) и светопропускание (\mathcal{I}). Коэффициент поглощения (\mathcal{K}), коэффициент погашения: удельный (\mathcal{E}) и молярный (\mathcal{E}). Связь между коэффициентом поглощения и молярным коэффициентом погащения. Количественный фотометрический (молекулярно-абсорбционный) анализ. Условия проведения: способы получения окрашенных соединений, выбор фотометрической реакции, длины волны поглощаемого света, длины кюветы. Расчет концентрации по градуировочному графику, методу одного стандарта, добавок стандарта, по молярному коэффициенту погашения. Одно- и двухлучевые фотоэлектроколориметры: устройство, принцип работы.

Атомно-абсорбционный анализ (спектроскопия) ААС.

Классификация спектральных методов. Спектры испускания и по-глощения атомов. Основной закон светопоглощения. Сущность ААС. Принципиальная схема атомно-абсорбционного спектрофотометра: источник излучения, атомизатор, монохроматор, детектор. Атомно-абсорбционный спектрофотометр «Спираль-14». Определение ртути методом «холодного пара» на анализаторе «Юлия». Количественный анализ методом ААС.

Рефрактометрический метод анализа.

Преломление света на границе двух сред. Показатель преломления: относительный и абсолютный. Зависимость показателя преломления от диэлектрической проницаемости среды, природы вещества и его плотности, длины волны падающего света, температуры и давления. Измерение величины показателя преломления. Угол полного внутреннего отражения.

Аппаратура: рефрактометры типа Аббе и Пульфриха, их особенности.

Удельная и молекулярная рефракция. Идентификация вещества по величине молекулярной рефракции. Применение рефрактометрии в анализе. Методы количественных определений компонента в анализируемом растворе.

Поляриметрический метод анализа.

Сущность поляриметрического метода анализа. Получение плоскополяризованного света. Оптически активные вещества. Вращение плоскости поляризации. Угол вращения плоскости поляризации и его зависимость от толщины слоя, концентрации раствора и индивидуальных свойств оптически активного вещества. Удельное вращение плоскости поляризации и ее зависимость от различных факторов (природы и концентрации вещества, длины волны поляризуемого света, температуры и природы растворителя). Принципиальная схема поляриметрических измерений. Виды поляриметров. Назначение основных узлов прибора. Применение поляриметрии для определения концентрации оптически активных веществ и идентификации.

Люминесцентный метод анализа.

Сущность явления люминесценции. Механизм возникновения свечения. Закон люминесценции Стокса – Ломмеля. Энергетический и квантовый выход люминесценции. Закон С.И.Вавилова. Зависимость энергетического и квантового выходов от длины волны возбуждающего света. Классификация люминесценции по методу возбуждения и длительности свечения. Правило зеркальной симметрии спектров возбуждения и люминесценции. Зависимость выхода и интенсивности люминесценции от концентрации люминесцирующего вещества, температуры, рН раствора. Случаи тушения люминесценции: концентрационное, температурное, посторонними примесями. Качественный люминесцентный анализ. Количественный люминесцентный анализ. Важнейшие реагенты в люминесцентном анализе. Виды количественного анализа: метод стандартных серий, метод построения градуировочного графика, метод добавок, титрование с применением люминесцирующих индикаторов.

Аппаратура люминесцентного (флуоресцентного) анализа.

Нефелометрический и турбидиметрический методы анализа.

Сущность нефелометрического и турбидиметрического методов анализа и область применения. Рассеяние и поглощение света растворами, содержащими взвешенные частицы. Зависимость интенсивности светорассеяния в нефелометрии от различных факторов. Уравнение Рэлея.

Условия, определяющие прямую пропорциональность между рассеивающей способностью и концентрацией диспергированного вещества. Определение интенсивности светового потока при турбидиметрических измерениях. Условия проведения определений при нефелометрическом и турбидиметрическом анализах. Аппаратура: нефелометры и турбидиметры. Фототурбидиметрическое титрование.

Физико-химические методы разделения и концентрирования Методы маскирования.

Сущность и назначение методов маскирования. Виды маскирования. Группы маскирующих веществ. Индекс маскирования.

Разделение и концентрирование.

Необходимость методов разделения и концентрирования. Сущность методов разделения и концентрирования. Абсолютное и относительное концентрирование. Количественные характеристики разделения и концентрирования: коэффициент распределения (I), степень извлечения (R), коэффициент разделения (BA/α), коэффициент концентрирования (S_L).

Осаждение и соосаждение - как методы разделения.

Экстракция. Сущность. Условия экстракции. Скорость экс-тракции. Классификация экстракционных процессов по: природе и свойст-вам экстрагентов, типу соединений, переходящих в органическую фазу, способам осуществления экстракции.

Способы осуществления экстракции: периодическая, непрерывная, противоточная.

Электрохимические методы разделения: метод цементации, электрофорез (фронтальный и зонный), современный вариант – капиллярный электрофорез.

Методы испарения: дистилляция, отгонка, сублимация.

Другие методы разделения и концентрирования: управляемая кристаллизация, диффузные методы, фильтрация, седиментация и ультрацен-трифугирование.

Хроматографические методы анализа.

Сущность хроматографии. Возможности метода. Классификация по агрегатному состоянию среды, механизму разделения компонентов, форме проведения хроматографического процесса.

Ионообменная хроматография. Выбор сорбента в зависимости от природы анализируемой смеси. Химизм процессов, протекающий на ионитах. Свойства, определяющие качество ионита.

Ионообменная емкость, сорбционные ряды для различных ионитов. Применение ионообменной хроматографии.

Распределительная (экстракционная) хроматография. Сущность и физикохимические основы метода. Подвижные и неподвижные носители. Распределительная жидкостная хроматография.

Формы ее проведения: колоночная, бумажная и тонкослойная

Осадочная хроматография. Ее сущность и область применения. Последовательность процесса осаждения и порядок расположения осадков на хроматограмме. Выбор осадителя. Ряды растворимости.

Газовая (газожидкостная и газоадсорбционная) хроматография. Сущность метода. Понятие о теории метода. Хроматограмма, хроматографический пик, его характеристики. Параметры удерживания. Параметры разделения: степень разделения, коэффициент разделения, число теоретических тарелок. Влияние температуры на разделение.

Принципиальная схема газового хроматографа. Основные узлы хроматографа «Цвет-500» и их назначение. Источники потока газа — носителя.

Дозировка и введение пробы в хроматограф. Хроматографические колонки: материалы, форма и размеры колонок. Детекторы, их назначение и классификация по принципу действия и форме записи. Регистрирующие устройства. Методы хроматографии в зависимости от способа перемещения анализируемой смеси: проявительный (элюэнтный), вытеснительный и фронтальный. Интегральная и дифференциальная хроматограммы. Критерии качественной и количественной расшифровки: время удерживания и площадь пика. Методы качественных

определений: метод эталонных вещественных смесей, метод добавок и табличный метод.

Количественные определения. Метод построения градуировочного графика (абсолютной градуировки). Метод внутренней нормализации и метод внутреннего стандарта. Вычисление поправочных коэффициентов.

Ионометрические методы анализа продуктов пищевой промышленности. Кальцийселективные электроды. Калий — и натрийселективные электроды. Медьселективные электроды. Нитрат селективные электроды. Галогенид селективные электроды. Цианидселективные электроды .

Исследование полифенольных соединений методом гель-хроматографии в сочетании с тонкослойной хроматографией и спектрофотометрией

Современные методы определения белка в соках, молоке и других пищевых продуктах.

Химические методы определения белковых соединений. Формальное титрование. Иодометрический метод. Фотометрические методы. Электрофорез.

Использование методов математической статистики в аналитической химии. Правильность и точность анализа, классификация ошибок, систематические и случайные ошибки. Грубые ошибки. Методы проверки правильности результатов анализа. Случайные ошибки. Воспроизводимость результатов анализа. Закон нормального распределения случайных ошибок. Методы оценки точности результатов анализа.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении теоретического курса на лекциях предусматривается изложение материала в виде презентации. Отдельные лекции излагаются по проблемной технологии.

На лекциях используются в качестве демонстрационного материала Периодическая система элементов Д. И. Менделеева и ряд других справочных таблиц.

Некоторые разделы теоретического курса изучаются с использованием опережающей самостоятельной работы: студенты получают задания на ознакомление с новым материалом до его изложения на лекциях.

В лабораторном практикуме при выполнении отдельных опытов используется метод проблемного обучения: студент получает задание, методику которого он должен подобрать самостоятельно, исходя из имеющихся реактивов, обсудить ее с преподавателем и затем приступить к его выполнению.

7. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционные занятия проводятся 1 раза неделю в объеме 2 часов в 8 семестре. Лабораторные занятия проводятся еженедельно в объеме 4 часов в неделю. После окончания изучения каждой темы студенты проходят тестирование, собеседование, выполняют контрольные работы.

- 7.1. Перечень-учебно-методического обеспечения для обучающихся по дисциплине:
 - 1. Основы аналитической химии. В 2-х кн. /Под ред. Ю.А. Золотова. М.: Высш. шк., 2005.
 - 2. Васильев В.П. Аналитическая химия, в 2-х кн., М.: Дрофа, 2002.
 - 3. Основы аналитической химии. Практическое руководство. Учебное пособие для вузов. Под ред. Ю.А. Золотова. М.: Высш. шк., 2001. 463 с.
 - 4.Практикум по физико-химическим методам анализа./Под ред. Петрухина О.М. М.: Химия,1989
- 7.2. Указания для обучающихся по освоению дисциплины

Таблица 7.1.

Содержание самостоятельной работы обучающихся

Номер раздел	Темы/вопросы, выносимые на самостоятельное изу- чение	Кол-во часов	Формы работы
1.	Задачи и перспективы аналитической химии пищевых продуктов.	8	собеседование, тестовый контроль
2.	Некоторые аспекты применения физических и физико-химических методов для анализа пищевых продуктов.	8	собеседование, тестовый контроль
3.	Методы количественного анализа, основанные на измерении количества реактива, израсходованного на реакцию с определяемым ионом.	8	собеседование, тестовый кон- троль
4.	Электрохимические методы анализа.	8	собеседование, тестовый кон- троль
5.	Оптические методы анализа	10	собеседование, тестовый кон- троль

6.	Физико-химические концентрирования	методы	разделения	И	6	собеседование, тестовый контроль
7.	Хроматографические ме	стоды анализ	a		10	собеседование, тестовый контроль

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Фонды оценочных средств и критерии оценки представлены отдельно, как приложение к рабочей программе.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Основная литература:

- 1. Основы аналитической химии. В 2-х кн. /Под ред. Ю.А. Золотова. М.: Высш. шк., 2005.
- 2. Васильев В.П. Аналитическая химия, в 2-х кн., М.: Дрофа, 2002.
- 3. Основы аналитической химии. Практическое руководство. Учебное пособие для вузов. Под ред. Ю.А. Золотова. М.: Высш. шк., 2001. 463 с.
- 4.Практикум по физико-химическим методам анализа./Под ред. Петрухина О.М. М.: Химия, 1989
- 5. Физико-химические методы анализа. / Под ред. Алесковского А.И., Л.:Химия, 1988
- 6. Чарыков А.К. Математическая обработка результатов химического анализа, Л.:

Химия, 1984

- 7.Барковский В.Ф., Городовцева Т.Б., Торонова Н.Б. Основы физико-химических метолов
 - анализа. М.: Высшая школа, 1983.
 - 8. Бабко А.К. и др. Физико-химические методы анализа. М.: Высшая школа, 1968. 9. Золотов Ю.А. Основы аналитической химии. В 2 кн. Кн.1. Общие вопросы. Методы разделения. Кн.2. Методы химического анализа / Под ред. Ю.А.Золотова/ -
 - 2е изд. М.: Высшая школа, 2002. 10. Крешков А.П. Основы аналитической химии. – М.: Высшая школа, 1976. Т.1,2,3.

б) Дополнительная литература

- 1. Васильев В.П. Аналитическая химия. Кн.2. Физико-химические ме-тоды анализа. М.: Высшая школа, 1989.
- 2. Петрухин О.М., Власова Е.Г., Жуков А.Ф. и др. Аналитическая хи-мия. Химические методы анализа. – М.: Химия, 1993.
- 3. Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В 2 т. М.: Химия, 1990.

в) Программное обеспечение и Интернет-ресурсы

 $http://c\text{-}books.narod.ru/pryanishnikov1_2_1.html$

http://alhimic.ucoz.ru/load/26

http://www.chem.msu.su/rus/teaching/org.html

http://www.xumuk.ru

http://chemistry.narod.ru

http://www.media.ssu.samara.ru/lectures/deryabina/index/html

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теоретический курс

- лекционные аудитории;
- учебно-исследовательская лаборатория.

Лабораторный практикум:

- фотоэлектроколориметр КФК-2МП с вычислительным блоком,
- хроматограф газовый «Цвет-500» с компьютером,
- рН-метр-милливольтметр 150,
- рефрактометр ПРФ-454БМ,
- сушильный шкаф,
- электронная муфель-ная печь ЭМП 010.
- весы аналитические, технические.
- спектрофотометр СФ-46.
- иономеры И130, Эксперт, Аквилон.
- атомно-абсорбционный спектрометр «Квант Z-ЭТА» с программным обеспечением и набором ламп.
- газовый хроматограф «Кристалл» с детекторами по теплопроводности, электронному захвату и капиллярными колонками.
- оборудование для тонкослойной хроматографии.
- ИК-спектрометр.
- мерная посуда, ступки для пробоподготовки, чашки, тигли.
- центрифуга