МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра химии

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ СТРОЕНИЕ ВЕЩЕСТВА

Факультет: химико-биологический

Направление подготовки /специальность: 04.03.01. Химия

Программа: академический бакалавриат

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

Составители рабочей программы
доцент, к.х.н. /Китиева Л.И./
Рабочая программа утверждена на заседании кафедры химии
Протокол заседания № 6 от «27» annew 2018 г.
/Заведующий кафедрой
Десел / <u>Султыгова 3.Х.</u> /
Рабочая программа одобрена учебно-методическим советом
_химико-биологического факультета
Протокол заседания № <u>4</u> от « <u>28</u> » <u>а преме 20</u> г.
Председатель учебно-методического совета
Плиева А.М. /
Программа рассмотрена на заседании Учебно-методического совета университета
протокол № <u>5</u> от « <u>25</u> » мах 2070 г.
Председатель Учебно-методического совета университета
/Хашагульгов Ш.Б. /

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Строение вещества» являются: изучение студентами теоретических основ современных представлений о строении атомов, молекул, кристаллов; углубленное изучение теории химической связи и реакционной способности веществ; строения и свойств вещества и составляющих его частиц; последовательно развивать первоначальные сведения о теории строения вещества, полученные студентами при изучении дисциплин «Общая химия» и «Квантовая химия»: рассмотреть вопросы теории химической связи и электронного строения молекул, строения конденсированных фаз, а также взаимосвязи реакционной способности и строения молекул.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Курс «Строение вещества» входит в вариативную часть как обязательная дисциплина и изучается в 5 семестре. Строение вещества — это базовый курс, изучающий в широком плане структурные особенности всех видов материи, обладающих ненулевой массой покоя. Химики изучают главным образом вещества, организованные в атомы, молекулы, ионы и радикалы, причем во всех известных агрегатных состояниях — газообразном, жидком, твердом и плазменном.

Современные представления о строении вещества основаны на базовых принципах и используют методы квантовой механики и квантовой химии.

В значительной степени курсы «Квантовая химия» и «Строение вещества» дополняют друг друга. Курс «Строение вещества» является фундаментом всей современной теоретической химии, включающей как квантовую химию, так и классическую теорию химического строения.

Таблица 2.1. Связь дисциплины «Строение вещества» с предшествующими дисциплинами и сроки их изучения

Код	Дисциплины,	предшествующие	дисциплине	Семестр
дисциплины	«Строение вещества	>>		
Б1.Б.5	Математика			1-4

Б1.Б.6	Физика	1-4
Б1.Б.7	Информатика	1-4
Б1.Б.8	Неорганическая химия	2,3
Б1.В.ОД.2	Квантовая химия	4

Таблица 2.2.

Связь дисциплины «Строение вещества» с последующими дисциплинами и сроки их изучения

Код дисциплины	Дисциплины, следующие за дисциплиной «Строение вещества»	Семестр
	•	
Б1.Б.10	Органическая химия	6,7
Б1.Б.11	Физическая химия	6,7
Б1.В.ОД.6	Физические методы исследования	6
Б1.В.ОД.11	Химические основы биологических процессов	7
Б1.Б.12	Высокомолекулярные соединения	8
Б1.В.ДВ.3	Коллоидная химия	8
Б1.В.ДВ.6	Теоретические основы неорганической химии	8

В результате освоения дисциплины обучающийся должен:

• Знать:

- основные понятия теоретической и прикладной химии;
- основные положения курса «Общая и неорганическая химия».
- основу теорий МО;
- основные типы взаимодействий в веществе

• Уметь:

- использовать научную терминологию;
- применять различные теории для решения поставленной задачи;
- изображать структуру различных веществ;
- составлять формулу по названию и название по структурной формуле;
- объяснять на качественном уровне взаимосвязь строения и свойств молекул.

• Владеть:

- пространственным мышлением;
- основными понятиями химии;
- навыками поиска и обработки информации;
- представлениями о химических взаимодействиях.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки:

а) профессиональных (ПК) – ПК-3, ПК-5, ПК-6, ПК-12

Таблица 3.1. Матрица связи компетенций, формируемых на основе изучения дисциплины «Строение вещества», с временными этапами освоения ее содержания

Коды компетенций (ФГОС)	Компетенция	Семестр изучения
ПК-3	Владение системой фундаментальных химических понятий	5
ПК-5	Способность получать и обрабатывать результаты научных экспериментов с помощью современных компьютерных технологий	5
ПК-6	Владение навыками представления полученных результатов в виде кратких отчетов и презентаций	5
ПК-12	Способность принимать решения в стандартных ситуациях, брать на себя ответственность за результат выполнения заданий	5

4. ОБЪЕМ ДИСЦИПИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Таблица 4.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего	5
	часов	семестр
Общая трудоемкость дисциплины	144	144
Аудиторные занятия	82	82
Лекции	32	32
Практические занятия	48	48
Контроль самостоятельной работы (КСР)	2	2
Самостоятельная работа студентов (СРС)	35	35
Контроль	27	27

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Таблица 5.1. Структура и содержание дисциплины

№ п/ п	Раздел Дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)		Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)		
				лекция	практ.	сам.р.		
1	Основные типы взаимодействий в веществе. Агрегатные состояния вещества	5	1	2	2	2		
2	Орбитали неклассических	5	2	2	2	2		

	органических							
	структур							
	Полиэдрические							
3	органические	5	3	2	2	2		
	молекулы и ионы							
	Теория							
4	кристаллического	5	4	1	2	2		
	поля							
	MO							
5	координационных	5	5	2	2	2		
	соединений							
6	Правила	5	6	2	2	2		
	электронного счета		U			2		
	Деформации							
7	координационных	5	7	2	2	2		
	полиэдров							
8	Строение боранов и	5	8	1	2	1		
	карборанов	_	0			1		
9	Металлосодержащие	5	9	2	2	2		
	кластеры							
	Структурно							
	нежесткие молекулы.			_	_			
10	Основные типы	5	10	2	2	2		
	структурной							
	нежесткости							
11	Межмолекулярные	5	11,	4	4	2	Te	стовый контроль
	взаимодействия	_	12	-	·	_		т т т т т т т т т т т т т т т т т т т
	Различные формы							
1.0	потенциальных	_ ا	,,	•				
12	функций для парных	5	13	2	2	2		
	межмолекулярных							
	взаимодействий						+	
13	Строение жидкостей	5	14	2	4	2		
	и аморфных веществ Строение мезофаз.							
14	Методы изучения	5	15	2	4	2		
14	структуры мезофаз)	13	2	"	2		
	Строение							
	кристаллов.							
	Кристаллическая							
15	решетка и	5	16	2	4	2	Те	стовый контроль
	кристаллическая							
	структура							
	Реальные ионные	\vdash						
16	кристаллы. Ионная	5	17	2	4	2	Te	стовый контроль
	проводимость		''	_		-		
	Строение металлов.							
17	Зонная теория	5	18	1	4	2		
	металлов							
	Поверхность							
18	конденсированных	5	19	1	4	2	Те	стовый контроль
	фаз. Особенности							
	-	•			•		•	

строения					
поверхности					
кристаллов и					
жидкостей					
ИТОГО:		32	48	35	

 Таблица 5.2.

 Конкретизация результатов освоения дисциплины

ПК-3 Владение системой фун	даментальных химических по	วหятий
Знать: основы фундамен-	Уметь: применять теоре-	Владеть: основами тео-рии
тальных разделов химии:	тические знания для	фундаментальных разделов
неорганической химии (сос-	решения конкретных за-	химии; навыками решения
тав, строение, свойства ве-	дач в химии; поль-	конкретных теоретических
ществ и соединений), орга-	зоваться современными	и экспериментальных за-
нической химии (основ-ные	представлениями основ-	дач.
классы углеводородов, гомо-	ных разделов естест-	
функциональных, гетеро-	венных наук для	
функциональных и гете-	объяснения специфики	
роциклических соединений),	поведения химических	
аналитической химии	соединений; использовать	
(метрологические основы	данные по строению	
анализа, существо реакций,	веществ и соединений для	
принципы и области	изучения их свойств;	
использования химического	использовать структурные	
анализа), физической химии	данные в исследовании.	
(основы термодинамики,		
теории растворов и фазовых		
равновесий, химической		
кинетики и катализа,		
электрохимии); перспекти-		
вы развития наук; роль		
химического анализа, основ-		
ные особенности свойств вы-		
сокомолекулярных систем		
(структура, свойства, методы		
синтеза, области применения		
полимеров), теоретические		
основы химико-технологи-		

ческих процессов; основные приближения квантовой химии; теоретические основы коллоидной химии, теорию строения кристаллов и схему их квалификации; возможсферы их связи и приложения, возможность их использования в познавательной и профессиональной деятельности; перспективы развития биотехнологии. ПК-5 Способность получать и обрабатывать результаты научных экспериментов с помощью современных компьютерных технологий Знать: основные методы, Уметь: получать Владеть: методами способы и средства полобрабатывать результаты регистрации И научных экспериментов с учения, хранения, обработки программным результатов научных экспомощью современных обеспечением периментов cпомощью компьютерных для современных компьютерных технологий. обработки результатов технологий; совре-менные научного эксперимента. компьютерные технологии обработки результатов научных исследований. ПК-6 Владение навыками представления полученных результатов в виде кратких отчетов и презептаций Знать: требования Уметь: представлять Владеть: навыками оформлению рефератов, полученные результаты в представления полученных научных сообщений, статьей кратких виде отчетов результатов в виде кратких для печати и т.п., способы (стендовые доклады, представления полученных рефераты, отчетов и презентаций, статьи периодической результатов. научной опытом участия в научных печати), устном дискуссиях. выступлении (доклады,

презентации).

Уметь: принимать реше-
ния в стандартных ситуа-
циях, брать на себя
ответственность за резуль-
тат выполнения заданий.

Содержание дисциплины «Строение вещества»

- 1. Основные типы взаимодействий в веществе, их порядок (слабые, сильные, электромагнитные и гравитационные). Агрегатные состояния вещества. Обзор важнейших экспериментальных методов изучения строения вещества. Сканирующая туннельная и атомно-силовая спектроскопии. Фемтосекундная спектроскопия.
- 2. Орбитали неклассических органических структур. Ион метония CH⁵¹. МО циклических напряженных структур. Пирамидан, катион Мазамуне. Правила электронного счета для пирамидальных систем симметрии Cnv.
- 3. Полиэдрические органические молекулы и ионы. Тела Платона и Архимеда в органической химии. Трехмерная ароматичность. Фуллерены. Углеродные нанотрубки.
- 4. Теория кристаллического поля (ТКП). Расщепление d-AO центрального иона. Количественная оценка расщеплений. Спектрохимический ряд. Комплексы сильного и слабого полей. ТКП и магнитные свойства комплексов. Энергия стабилизации кристаллическим полем.
- 5. Применение теории МО для описания электронного строения координационных соединений. МО координационных соединений с лигандами, имеющими σ-орбитали. МО координационных соединений с лигандами, имеющими σ- и π-орбитали.
- 6. Правила электронного счета: 18 ē, 16 ē, 14 ē. Концепция изолобальной аналогии. Агостическая связь. Сравнение важнейших электроноэквивалентных фрагментов и молекул.
- 7. Деформации координационных полиэдров. Эффекты Яна-Теллера. Теорема Яна-Теллера. Экспериментальные проявления эффектов Яна-Теллера.
- 8. Строение боранов и карборанов. Орбитали диборана. Критика концепции электронного дефицита. Дельтаэдрические структуры. Клозо-, нидо-, арахно-, гифоструктуры. Правила электронного счета Уэйда.
- 9. Металлосодержащие кластеры. Классификация кластеров. Правило эффективного атомного номера (ЭАН). Значение кластеров для нанохимии.
 - 10. Структурно нежесткие молекулы. Основные типы структурной нежесткости.

Политопные перегруппировки. Пирамидальная и плоская инверсия. Тетраэдрическая инверсия тетракоординированных структур. Проблема плоского поликоординированного атома углерода. Псевдовращение Берри.

- 11. Межмолекулярные взаимодействия. Приближенное описание межмолекулярных взаимодействий в разряженных газах как суммы дисперсионных, ориентационных и индукционных взаимодействий. Ван-дер-Ваальсовы силы.
- 12. Различные формы потенциальных функций для парных межмолекулярных взаимодействий. Специфические межмолекулярные взаимодействия. Водородная связь, ее типы. Клатраты. Классификация клатратов. Понятие о супрамолекулярной химии.
- 13. Строение жидкостей и аморфных веществ. Мгновенная и колебательноусредненная структура жидкости. Ассоциаты и кластеры в жидкостях. Флуктуации и корреляционные функции. Специфика аморфного состояния. Правила Захариасена. Понятие о сверх- и субкритических флюидах. Принципы зеленой химии.
- 14. Строение мезофаз. Методы изучения структуры мезофаз. пластические кристаллы. Жидкие кристаллы (нематики, смектики, холестерики, дискотики).
- 15. Строение кристаллов. Кристаллическая решетка и кристаллическая структура. Теорема Делоне. Трансляционная симметрия. Классификация кристаллов по Белову. Атомные, ионные, молекулярные и другие типы кристаллов. Фононный спектр кристалла. Квазикристаллы. Паркеты Пенроуза и Маккея. Энергии кристаллических решеток.
- 16. Реальные ионные кристаллы. Ионная проводимость. Суперионные проводники (СИП). Сегнето-, пиро- и пьезоэлектрические эффекты. Проблема холодного ядерного синтеза.
- 17. Строение металлов. Зонная теория металлов. Функции Блоха. Плотность состояний. Поверхность Ферми. Понятие о зонах Бриллюэна. Сверхпроводимость. Квантовый эффект Холла. Сплавы металлов. Правило Юм-Розери.
- 18. Поверхность конденсированных фаз. Особенности строения поверхности кристаллов и жидкостей. Структура границы раздела конденсированных фаз. Молекулы и кластеры на поверхности. Структура адсорбционных слоев.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе обучения используются традиционные образовательные технологии (лекции, семинары, практические работы) и активные инновационные образовательные технологии

- 1. Семинар в диалоговом режиме применяется в основном при обсуждении выступлений студентов с докладами (рефератами)
 - 2. Групповой разбор результатов контрольных работ
- 3. Встречи с сотрудниками и руководителями профильных лабораторий и предприятий потенциальными работодателями выпускников.

В целом при изучении курса активные и интерактивные формы проведения занятий составляют не менее 30% аудиторных занятий.

7. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционные занятия проводятся 1 раз неделю в объеме 2 часов и 2 часов практических занятий в пятом семестре. После окончания изучения каждой темы студенты проходят тестирование, собеседование, выполняют контрольные работы.

- 7.1. Перечень-учебно-методического обеспечения для обучающихся по дисциплине:
 - 1. Гиллеспи Р. Геометрия молекул. М.: Мир, 1975.
 - 2. Дей К., Селбин Д. Теоретическая неорганическая химия. –М.: Химия, 1976.
- 3. Карапетьянц М.Х. Дракин С.Н. Строение вещества. -М.: Высшая школа, 1977.
 - 4. Краснов К.С. Молекулы и химическая связь. -М.: Высшая школа, 1977.
 - 7.2. Указания для обучающихся по освоению дисциплины

Таблица 7.1.. Содержание самостоятельной работы обучающихся

Номер раздела (темы)		Кол- во часов	Формы работы
	Качественные методы определения пространственного и электронного строения молекул. Принципы качественной теории МО. Взаимо-действие двух орбиталей. Взаимодействие не-скольких орбиталей фрагментов. Орбитали связей и групп.	5	собеседование, тестовый контроль

2.	Синтезы тетраэдрана, кубана и додекаэдрана. Координационная связь. Типы координационных полиэдров. Теория Гиллеспи и координационные соединения. Концепция гибридизации и строение координационных соединений.	5	
3.	π-Комплексы и металлоцены. МО ферроцена. Модель Дьюара-Чатта-Дункансона.	5	Собеседование, тестовый контроль
4.	Правила Мингоса.	4	Собеседование, тестовый кон- троль
5.	Методы исследования структурно нежестких молекул. Электронная природа структурной нежесткости. Структурно нежесткие молекулы с высокими координационными числами. Внутреннее вращение. туннельный механизм превращений структурно нежестких молекул. Принципы работы лазеров, мазеров и иразеров.	4	собеседование, тестовый кон- троль
6.	π-Комплексы и комплексы с переносом заряда.	4	собеседование, тестовый контроль
7.	Цикл Борна-Габера.	4	собеседование, тестовый контроль
8.	Полиморфизм и аллотропия.	4	собеседование, тестовый контроль

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Фонды оценочных средств и критерии оценки представлены отдельно, как приложение к рабочей программе.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) основная литература:

1. Берсукер И.Б. Электронное строение и свойства координационных соединений. Введение в теорию. – Л.: Химия,1986.

- 2. Блохинцев А.И. Основы квантовой механики. –М.: Наука, 1976.
- 3. Гиллеспи Р. Геометрия молекул. М.: Мир, 1975.
- 4. Дей К., Селбин Д. Теоретическая неорганическая химия. –М.: Химия, 1976.
- 5. Карапетьянц М.Х. Дракин С.Н. Строение вещества. -М.: Высшая школа, 1977.
 - 6. Краснов К.С. Молекулы и химическая связь. –М.: Высшая школа, 1977.
- 7. Лер Р. , Марчанд А. Орбитальная симметрия в вопросах и ответах. –М.: Мир, 1976.
 - 8. Маррел Дж., Кеттл С., Теддер Дж. Химическая связь. -М.: Мир, 1980.
- 9. Мелешина А. М. Курс квантовой механики для химиков.-М.: Высшая школа, 1980.
- 10. Минкин В.И., Миняев Р.М. Неклассические структуры органических соединений. Ростов-на-Дону: РГУ,1985.
- 11. Минкин В.И., Олехнович Л.П. , Жданов Ю.А. Молекулярный дизайн таутомерных систем. Ростов-на-Дону: РГУ,1977.
- 12. Минкин В.И., Миняев Р.М., Симкин Б. Я. Теория строения молекул. Феникс 1997. Ростов на- Дону.
- 13. Минкин В.И., Миняев Р.М., Симкин Б. Я.. Квантовая химия органических соединений. Механизмы реакций. –М.: Химия, 1986.
- 14. Папулов Е. Г. Строение молекул. Тверь: ТГУ, 1995. Папулов Е. Г., Строение молекул. –Тверь: ТГУ, 1995.
- 15. Симкин Б.Я., Клецкий М. Е., Глуховцев М.Н. Задачи по теории строения молекул. Ростов-на-Дону: Феникс, 1997.
 - Фларри Р. Квантовая химия. М.: Мир, 1985.
 - 17. Харгитаи И., Харгитаи М. Симметрия глазами химика. -М.: Мир, 1989.
- 18. Хофман Р. Строение твердых тел и поверхностей: взгляд химика теоретика. –М.: Мир, 1990.
 - 19. Эткинс П. Кванты. Справочник концепций. –М.: Мир, 1997.
- 20. Яцимирский К.Б., Яцимирский В.К. Химическая связь. Киев: Вища школа, 1976.

б) дополнительная литература:

- 1. Абаренков И.В., Братцев В.Ф., Тулуб А.В. Начала квантовой химии. –М. Высшая школа, 1989.
 - 2. Бальхаузен К. Введение в теорию поля лигандов. –М.: Мир, 1964.

- 3. Блюменфельд Л.А., Кукушкин А.К. Курс квантовой химии и строения молекул. –М.: МГУ, 1980.
 - 4. Введение в квантовую химию. –М.: Мир, 1982.
- 5. Вудворд Р., Хофман Р. Сохранение орбитальной симметрии. -М.: Мир, 1976.
 - 6. Давтян О.К. Квантовая химия. –М.: Высшая школа, 1962.
 - 7. Джаффе Г., Орчин Н. Симметрия в химии. –M.: Мир, 1967.
 - 8. Джонсон К. Численные методы в химии. –М.: Мир, 1983.
 - 9. Дмитриев И.С. Молекулы без химических связей. –Л.: Химия, 1980.
- 10. Дьюар М. Теория молекулярных орбиталей в органической химии. –М.: Мир,1972.
 - 11. Дяткина М.Е. Основы теории молекулярных орбиталей. –М.: Наука. 1975.
 - 12. Заградник Р., Полак Р. Основы квантовой химии. -М.: Мир, 1979.
 - 13. Кларк Т. Компьютерная химия. –М.: Мир, 1990.
 - 14. Флайгер У. Строение и динамика молекул. –М.: Мир, 1982. Т. 1,2.
- 15. Фларри Р. Группы симметрии. Теория и химические приложения. М.: Мир, 1983.
 - 16. Футзинага С. Метод молекулярных орбиталей. М.: Мир, 1983.
- 17. Хьюи Дж. Неорганическая химия. Строение вещества и реакционная способность. М.: Химия, 1987.
 - 18. Цюлике Л. Квантовая химия. М.: Мир, 1976.

в) программное обеспечение и Интернет-ресурсы:

http://www.chem.msu.su/rus/elibrary/

http://www.chemport.ru/?cid=29

http://www.pxty.ru/f/otf/quant/method/lectures/lectures.htm

http://jarosh.by.ru/science.shtml

http://ftp.kinetics.nsc.ru/chichinin/rindex.htm

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- лекционные аудитории;
- аудитории для семинарских занятий;
- проекционное оборудование и компьютер.