МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Автоматика»

Основной профессиональной образовательной программы

академического бакалавриата

35.03.06 – Агроинженерия

Квалификация выпускника

бакалавр

Форма обучения

очная заочная

Магас 2018г.

Составители рабочей программы	ah	/
к.т.н., доцент	Sum	Газгиреев Х.Д. /
(должность, уч. степень, звание)	(подпись)	(Ф.И.О.)
Рабочая программа утверждена на заседа Протокол заседания № <u>8</u> от <u>«06» апг</u>	нии кафедры МО реля20 _ <u>18</u> _	CX r.
Заведующий кафедрой Дурогу (подпись)	_/ <u>Аушев М</u> (Ф.И	4.X/ (O.)
Рабочая программа одобрена учебно-мето агроинженерного факультета	одическим совет	ОМ
Протокол заседания № <u>8</u> от <u>«10» апр</u>	реля 20 18 г	· .
Председатель учебно-методического сов факультета (подпись) / Хаша (подпись) (Ф	вета <u>агроинжене</u> агульгова М.А. / D.И.O.)	<u>рного</u>
Программа рассмотрена на заседании учесовета университета	ебно-методическ	сого
Протокол заседания № <u>8</u> от <u>«25»</u> <u>апр</u>	реля 20 18_	г.
Председатель учебно-методического сог	вета университет пегульгов Ш.Б. (Ф.И.О.)	ra

І. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

- **1.1. Цель изучения** дисциплины формирование знаний и практических навыков по анализу, синтезу и использованию современных систем автоматического управления.
- **1.2. Задачи** дисциплины определяются квалификационными требованиями к уровню профессиональной подготовке инженеров по эксплуатации сельскохозяйственного производства.

І І. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ

ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ (ОПОП)

2.1. Цикл (раздел) ОПОП, к которому относится дисциплина

Учебная дисциплина «Автоматика» является дисциплиной базовой (Б1.В.ОД.1) вариативной части профессионального цикла дисциплин учебного плана основной образовательной программы, обеспечивающей подготовку бакалавра по направлению 35.03.06 - Агроинженерия.

Связь дисциплины «Автоматика» с предшествующими дисциплинами и сроки их изучения

	- J	
Код	Дисциплины, предшествующие дисциплине	Семестр
дисциплины	«Автоматика»	
Б1.Б.10	Гидравлика	1
Б1.В.ОД.10	Механизация, электрификация и автоматизация сельского хозяйства	1
Б.1.Б.5	Математика (Высшая математика)	1
Б1.В.ОД.8.1	Надежность и ремонт машин	1
Б2.В.ОД.6	Детали машин и основы конструирования	1
Б1.В.ОД.2.2.	Тракторы и автомобили	1

Связь дисциплины «Автоматика» с последующими дисциплинами и сроки их изучения

Код	Дисциплины, следующие за дисциплиной	Семестр
дисциплины	«Автоматика»	
Б1.В.ОД.2.1.	Сельскохозяйственные машины	8

III. ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, СООТВЕТСТВУЮЩИЕ ФОРМИРУЕМЫМ КОМПЕТЕНЦИЯМ

ОПК 9- готовность к использованию технических средств автоматики и систем автоматизации технологических процессов

Знать: технические средства для автоматизации процессов в растениеводстве и животноводстве;

Уметь: использовать средства и системы автоматизации процессов при проведении работ растениеводства и животноводства;

Владеть: навыками использования систем автоматического контроля зерноуборочных комбайнов, систем навозоудаления и доения

ПК-2- готовность к участию в проведении исследований рабочих и технологических процессов машин

Знать: знать методы, методы исследований используемых при решение профессиональных задач, типовые программы и методики

Уметь: наблюдать, фиксировать за рабочими и технологическими процессами машин, являющихся объектами исследований

Владеть: иметь навыки участия в проведении исследований рабочих и технологических машин, являющихся объектами исследований;

Таблица 3.1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Перечень компетенций, которыми должны овладеть обучающиеся в результате освоения образовательной	Уровень сформиров анности компетенц ии	_	нируемых резулисциплине (мод Умения	
программы				
OTH O		ссиональные ко		T 7
	Высокий	Сформирова	Сформирован	Успешное и
•	уровень (по	нные	ное умение	систематичное
	отношению к	представлен	использовать	применение
	базовому)	О ВИ	средства и	навыков и
		технических	системы	опыта
		средствах	автоматизаци	использования
		для	и процессов	систем
		автоматизац	при	автоматическо
		ии процессов	проведении	го контроля
		В	работ в	зерноуборочн
		растениеводс	растениеводс	ых комбайнов,
		тве и	тве и	систем
		животноводс	животноводс	навозоудалени
		тве	тве	я и доения
Б	азовый	Знания базовых	В целом	В целом
y ₁	• `	представлений	F .	успешное, но
o	тношению	о технических	содержащие	содержащее
κ		средствах для		отдельные
М	инимальному)	автоматизации	пробелы	пробелы
		процессов в	умение	владение
		растениеводст	использовать	навыков и опыта
		ве и	средства и	использования
		животноводств	системы	систем
		e	автоматизации	автоматическог

				о контроля
			_	зерноуборочных
			работ в	комбайнов,
			растениеводств	
				навозоудаления
			животноводств	и доения
			e	
	Минимальный	Частичные	Частично	Фрагментарное
	уровень	знания	освоенное	владение
	(уровень,	базовых	умение	навыками и
	обязательный	представлени	использовать	опытом и
		l [*]	средства и	использования
	обучающихся,	технических	системы	систем
			автоматизации	
		-	· ·	о контроля
		*	1	зерноуборочны
		-	-	х комбайнов,
		ве и	растениеводств	· ·
			r	
		, ,		навозоудаления
		ве	животноводств	и доения
	1		е	
ПС		ональные комп		X 7
ПК - 2	Высокий		Сформированн	
	V .			систематичное
		представления		применение
	базовому)			навыков участия
			r e	в проведении
		исследований		исследований
		используемых	ими	рабочих и
		при решении	процессами	технологически
		профессиональ	машин,	х машин,
		ных задач,	являющихся	являющихся
		типовых	объектами	объектами
		программ и	исследований	исследований
		методик		
	Базовый	Знания базовых	В целом	В целом
	уровень (по	представлений	успешное, но	успешное, но
	отношению к	о видах,	содержащее	содержащие
	минимальному)	· ·	отдельные	отдельные
	• /		пробелы	пробелы
			1	владения
		1	наблюдать,	навыков участия
			фиксировать за	•
			рабочими и	исследований
		типовых	техническими	рабочих и
			процессами	технологически
	•	HILLANDI LIZIVINI VI VI	HILLANDINA AAADVIVI VI	ロシスロシコリコ かりにしんか コ

	методик	машин,	х машин,
		являющихся	являющихся
		объектами	объектами
		исследований	исследований
Минимальный	Частичные	Частично	Фрагментарное
уровень	знания	освоенное	владение
(уровень,	базовых	умение	навыками и
обязательный	представлени	наблюдать,	участия в
для всех	й о видах,	фиксировать за	проведении
обучающихся,	методах	рабочими и	исследований
осваивающих	исследований	техническими	рабочих и
ОПОП)	используемых	процессами	технологически
	при решении	машин,	х машин,
	профессионал	являющихся	являющихся
	ьных задач,	объектами	объектами
	типовых	исследований	исследований
	программ и		
	методик		

4. ОБЪЕМ ДИСЦИПИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ Структура и содержание дисциплины приведено в таблице:

Таблица

Виды занятий	Всего часов ОО	Всего часов ОЗО
Общая трудоёмкость	144	144
Лекции (Л)	34	12
Практические занятия (ПЗ)	34	-
Лабораторные занятия (ЛЗ)	-	-
Контроль самостоятельной работы (КСР)	2	4
Самостоятельная работа (СРС)	74	128
Промежуточная форма контроля - зачет с оценкой	7 семестр	4 семестр
Зачетные единицы	3	4

5.1. Оценка знаний студента

5.2.1. Основные принципы рейтинговой оценки знаний

Оценка знаний по дисциплине осуществляется согласно положению «О единых требованиях к контролю и оценке результатов обучения: Методические рекомендации по практическому применению модульно-рейтинговой системы обучения»

Уровень развития компетенций оценивается с помощью рейтинговых

Рейтинги	Характеристика рейтингов	Максимум баллов
Входной	Отражает степень подготовленности студента к изучению дисциплины. Определяется по итогам входного контроля знаний на первом практическом	5
Рубежный	Отражает работу студента на протяжении всего периода изучения дисциплины. Определяется суммой баллов, которые студент получит по результатам изучения каждого модуля.	70
Творческий	Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в том числе, участие в различных конференциях и конкурсах на протяжении всего курса изучения	5
Выходной	Является результатом аттестации на окончательном этапе изучения дисциплины по итогам сдачи экзамена. Отражает уровень освоения информационно-теоретического компонента в целом и основ практической деятельности в частности.	20
Общий рейтинг	Определяется путём суммирования всех рейтингов	100

Итоговая оценка компетенций студента осуществляется путём автоматического перевода баллов общего рейтинга в стандартные оценки.

Неудовлетворительно Удовлетворительно		Хорошо	Отлично
менее 51 балла 51-67 баллов		68-85 баллов	86-100 баллов

5.2.3. Критерии оценки знаний студента на экзамене

На экзамене студент отвечает в письменно-устной форме на вопросы экзаменационного билета (2 вопроса и задача).

Количественная оценка на экзамене определяется на основании следующих критериев:

- оценку «отлично» заслуживает студент, показавший всестороннее систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой; как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала;
- оценку «хорошо» заслуживает студент, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в

программе задания, усвоивший основную литературу, рекомендованную в программе; как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности;

- оценку «удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой; как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя;
- оценка «неудовлетворительно» выставляется студенту, обнаружившему проблемы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий; как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжать обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.
 - 5.2. Фонд оценочных средств. Типовые контрольные задания или иные материалы, необходимые для оценки формируемых компетенций по дисциплине

IV. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная учебная литература

- 1. Бородин И.Ф.ДО.А. Судник Автоматизация технологических процессов.- М.: М.: Колос С, 2004,- 344с.: ил
- 2. Практикум по автоматике. Математическое моделирование САР. Под ред. Б.А.Карташова, М.: Колос С, 2004, 184с.: ил. 3 Шавров А.В., Коломиец А.П. Автоматика. М.:Колос, 2000. 264с.:

ил, -(Учебники и учеб, пособия для высших учебных заведений)

6.2. Дополнительная литература

1. Мартыненко, И. И. Проектирование систем автоматики: учебное пособие / И. И. Мартыненко, В. Ф. Лысенко. - 2-е изд., перераб. и доп. - М.: Агропромиздат, 1990. - 243 с.: - (Учебники и учебные пособия для студентов высших учебных заведений).

6.2.1 Периодические издания

- 2. Механизация и электрификация сельского хозяйства.
- 3. Техника в сельском хозяйстве.
- 4. Техника и оборудование для села.
- 6. Вестник Российской академии сельскохозяйственных наук.
- 7. Международный сельскохозяйственный журнал.
- 8. Сельскохозяйственные вести.

6.3. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

6.3.1 Видеоматериалы

- 1. Системы автоматизации в сельском хозяйстве
- 2. Автоматизация теплиц с удаленным доступом
- 3. Презентации фирм, производящих элементную базу автоматики

6.3.2. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. Российское образование. Федеральный портал http://www.edu.ru
- 2. Центральная научная сельскохозяйственная библиотека http://www.cnshb.ru/
- 3. Российская государственная библиотека http://www.rsl.ru
- 4. ФЕРМЕР.БШ главный фермерский портал http://www.fermer.ш/
- 5. <u>АГРОПОРТАЛ. Информационно-поисковая</u>

система АПК http://www.agroportal.ru

6.4. Перечень информационных технологий

1. Программный комплекс ПК «МВТУ» Моделирование в технических устройствах»

6.5. Перечень программного обеспечения

- Microsoft Word 2010;
- Microsoft Excel 2010:
- Microsoft PowerPoint 2010.
- Microsoft Access СУБД (система управления базами данных).

Прикладные программы:

- MathCAD математический пакет;
- MathLAB математический пакет;
- Compas-Graffic пакет для проектирования.

Программы симуляторы

Electronics Workbench, PSpice LabView

v. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Для преподавания дисциплины используются:

- мультимедийное оборудование для демонстрации презентаций (слайд-фильмов) и видеофильмов,
- компьютерный класс для проведения занятия в форме компьютерной симуляции;
- Лаборатория «Автоматика» и «Автоматизация технологических процессов» с набором оборудования в соответствии с тематикой работ лабораторного практику

Описание показателей и критериев оценивания компетенций, описание шкал оценивания

	Планируемые	Уровни и критерии оценивания результатов обучения, шкалы оценивания				
	результаты обучения	Компетентность	Пороговый уровень	Продвинутый уровень		
тенция	(показатели	не сформирована	компетентности	компетентности	Высокий уровень	
	достижения заданно-	не зачтено (неуд.)	Зачтено (удоел.)	Зачтено (хорошо)	Зачтено (отлично)	
ОПК-9	готовность к использо-	Нет готовности к ис-	Частично готов к ис-	готов к использованию	Владеет	
	ванию технических	пользованию техниче-	пользованию техниче-	технических средств	современными	
	средств автоматики и	ских средств автома-	ских средств автома-	автоматики и систем	информационными	
	систем автоматизации	тики и систем автома-	тики и систем автома-	автоматизации техно-	технологиями, готов к	
	технологических про-	тизации технологиче-	тизации технологиче-	логических процессов	использованию	
	цессов	ских процессов	ских процессов		технических средств	
					автоматики и систем	
					автоматизации	
	Знать:	Не знает принципы	Допускает грубые	Знает принципы по-	Может проводить ана-	
	принципы построения	построения и	ошибки в	строения и	лиз на основе сравне-	
	и функционирования	функционирования	определениях	функционирования	ния различных	
	автоматизированных	автоматизированных	основных принципов	автоматизированных	принципов построения	
	систем управления,	систем управления,	построения и	систем управления,	и функционирования	
	роботехнических и	роботехнических и	функционирования	роботехнических и	автоматизированных	
	гибких	гибких пере-	автоматизированных	гибких пере-	систем управления, ро-	
	перестраиваемых	страиваемых систем;	систем управления,	страиваемых систем	ботехнических и гиб-	
	систем;		роботехнических и		ких перестраиваемых	
			гибких пе-		систем	
	I	1		1		

ПК-2	готовность к участию в	Нет готовности ис-	Есть частичная готов-	Есть готовность ис-	Есть готовность на
	проведении	пользовать современ-	ность использовать	пользовать	основе анализа
	исследований рабочих	ные методы монтажа,	современные методы	современные методы	вариантов
	и технологических	наладки машин и уста-	монтажа, наладки	монтажа, наладки ма-	использовать
	процессов машин	новок, поддержания	машин и установок,	шин и установок,	современные методы
		режимов работы элек-	поддержания режимов	поддержания режимов	монтажа, наладки
		трифицированных и	работы	работы	машин и установок,
		автоматизированных	электрифицированных	электрифицированных	поддержания режимов
		технологических	и автоматизированных	и автоматизированных	работы
		процессов,	технологических	технологических	электрифицированных
		непосредственно	процессов,	процессов,	и автоматизированных
		связанных с	непосредственно	непосредственно	технологических
		биологическими	связанных с	связанных с	процессов,
		объектами	биологическими	биологическими	непосредственно
			объектами	объектами	связанных с
					биологическими
					объектами.

	Знать:	Не знает основные по-	Знает основные поня-	Знает основные поня-	Знает основные поня-
	основные понятия и	нятия и определения	тия и определения ав-	тия и определения ав-	тия и определения ав-
	определения	автоматики	томатики;	томатики;	томатики;
	автоматики;		общие свойств автома-	общие свойств автома-	общие свойств автома-
	общие свойств автома-		тических систем Не	тических систем Знает	тических систем Знает
	тических систем;		знает принципы и	принципы и основные	принципы и основные
	принципы и основные		основные технологи-	технологические	технологические
ľ	технологические ре-		ческие решения, ис-	решения, исполь-	решения, исполь-
	шения, используемые		пользуемые для авто-	зуемые для автомати-	зуемые для автомати-
	для автоматизации		матизации мобильных	зации мобильных и	зации мобильных и
	мобильных и стацио-		и стационарных сель-	стационарных сель-	стационарных сель-
	нарных сельскохозяй-		скохозяйственных	скохозяйственных	скохозяйственных
	Уметь:	Не умеет классифици-	Умеет классифициро-	Умеет классифициро-	Умеет классифициро-
	классифицировать	ровать технические	вать технические сред-	вать технические сред-	вать технические сред-
ı	технические средства	средства автоматики;	ства автоматики;	ства автоматики;	ства автоматики;
	автоматики;	Не умеет оперировать	Не умеет оперировать	Умеет оперировать ко-	Умеет оперировать ко-
	оперировать количе-	количественными ха-	количественными ха-	личественными харак-	личественными харак-
	ственными характери-	рактеристиками	рактеристиками	теристиками надежно-	теристиками надежно-
	стиками надежности	надежности	надежности	сти	сти на основе инфор-
					мационных систем

Владеть:	Не владеет методами	Не владеет методами	Владеет методами рас-	Не владеет методами
методами расчета	расчета надёжности	расчета надёжности	чета надёжности авто-	расчета надёжности
надёжности автомати-	автоматических	автоматических	матических систем	автоматических систем
ческих систем сель-	систем	систем	сельскохозяйственног	сельскохозяйственного
скохозяйственного	сельскохозяйственног	сельскохозяйственног	о назначения;	назначения;
назначения; методами	о назначения;	о назначения;	Владеет методами ана-	Не владеет методами
анализа и синтеза	Не владеет методами	Не владеет методами	лиза и синтеза автома-	анализа и синтеза ав-
автоматических	анализа и синтеза ав-	анализа и синтеза ав-	тических систем	томатических систем
систем;	томатических систем;	томатических систем		на основе
				математических
				моделей

Фонд оценочных средств. Типовые контрольные задания или иные материалы, необходимые для оценки формируемых компетенций по дисциплине

- 1. Перечень вопросов для определения входного рейтинга
- 2. Измерение напряжения, силы тока и сопротивления электрической цепи.
- 3. Законы ОМА, Джоуля-Ленца.
- 4. Законы Кирхгофа.
- 5. Электрические машины переменного тока. Синхронные и асинхронные электродвигатели.
- 6. Измерение активного, индуктивного и емкостного сопротивления.
- 7. Электроизмерительные приборы, используемые в цепях переменного и постоянного тока. Включение измерительных приборов.
- 8. Приборы для электрических измерений неэлектрических величин.
- 9. ЭДС, напряжение, сила тока и сопротивление.
- 10. Назначение, устройство и принцип действия трансформатора. Общее устройство и рабочий процесс асинхронных электродвигателей.
- 11 .Электронные приборы.
- 12. Электронно-оптические приборы.
- 13. Электрические двигатели сельскохозяйственного назначения
- 14. Для чего предназначен электропривод? Назовите его составные части

2. Перечень вопросов к экзамену

- 1. Гидравлические и пневматические исполнительные устройства: назначение, устройство, принцип действия, характеристики.
- 2. Способы описания элементов и автоматических систем. Описание элементов и систем в статическом режиме.
- з. Исполнительные устройства: назначение, классификация, устройство.
- 4. Автоматизация уборки навоза на животноводческих фермах.
- 5. Чем занимается «Автоматика»? Поясните сущность таких категорий, как: управление, регулирование, объект управления, автоматическое управляющее устройство, автоматическая система, система автоматического управления, система автоматического регулирования.
- 6. Передаточная функция элемента: определение, методика получения, назначение.
- 7. Назовите принципы автоматического управления. Поясните сущность принципа управления по отклонению, изобразите функциональную схему автоматической системы, характерные особенности этого принципа управления, достоинства и недостатки.
- 8. Режимы работы автоматической системы. Способы описания элементов и систем в динамическом режиме.
- 9. Назовите принципы автоматического управления. Поясните сущность принципа управления по возмущению, изобразите функциональную схему

автоматической системы, характерные особенности этого принципа управления, достоинства и недостатки.

- 10. Автоматизация процесса сбора яиц.
- 11. Назовите принципы автоматического управления. Поясните сущность комбинированного принципа управления, изобразите функциональную схему автоматической системы комбинированного управления, характерные особенности этого принципа управления, достоинства и недостатки.
- 12. Автоматизация и функционально-технологическая схема башенной водокачки.
- 13. Функциональные схемы автоматических систем: определение, назначение. Воздействия и сигналы автоматических систем. Прямые и обратные связи.
- 14. Автоматизация и функционально-технологическая схема управления вентиляционной установкой.
- 15. Функциональные схемы автоматических систем: определение, назначение. Функциональные элементы автоматических систем и их назначение. Прямые и обратные связи.
- 16. Автоматизация, функционально-технологическая и принципиальная электрическая схемы автоматического управления теплогенератором ТГ-75.
- 17. Алгоритмы функционирования автоматических систем: определение и характеристика основных алгоритмов функционирования.
- 18. Автоматизация и функционально- технологическая схема управления пастеризатором молока ОПФ-1.
- 19. Алгоритм управления. Законы управления, используемые в автоматических системах.
- 20. Автоматизация и функционально-технологическая схема регулирования температуры в теплице.
- 21. Классификация автоматических систем. Дайте характеристику каждому классификационному признаку систем.
- 22. Автоматизация и функционально-технологическая схема управления естественной вентиляцией в теплице.
- 23. Способы описания элементов и автоматических систем. Описание элементов и автоматических систем с помощью дифференциальных уравнений. Формы записи дифференциальных уравнений.
- 24. Автоматизация и функционально-технологическая схема управления поливом и увлажнением воздуха в теплице.
- 25. Типовые или стандартные входные сигналы: назначение, характеристика и примеры.
- 26. Автоматизация и функционально-технологическая схема регулирования температуры поливочной воды.

- 27. Временные характеристики элементов и автоматических систем. Переходная функция: определение, способы получения, назначение, основные свойства.
- 28. Автоматизация, принципиальная и функциональная схемы автоматической системы управления гусеничным трактором с гидромеханическим регулятором.
- 29. Временные характеристики элементов и автоматических систем. Переходная функция: определение, способы получения, назначение, основные свойства.
- 30. Автоматизация, принципиальная и функциональная схемы автоматической системы управления гусеничным трактором с гидромеханическим регулятором.
- 31. Частотные характеристики элементов и автоматических систем: определение, назначение, способы получения, типы частотных характеристик.
- 32. Автоматизация, принципиальная и функциональная схемы автоматической системы регулирования загрузки зерноуборочного комбайна.
- 33. Логарифмические частотные характеристики элементов и автоматических систем: определение, назначение, способы получения, типы.
- 34. Автоматизация, принципиальная и функциональная схемы автоматической системы регулирования частоты вращения вала двигателя внутреннего сгорания.
- 35. Типовые динамические звенья: определение, типы динамических звеньев, назвать основные характеристики динамических звеньев.
- 36. Автоматизация, принципиальная и функциональная схемы автоматической системы управления холодильной машиной МХУ-8C.
- 37. Позиционные звенья: назвать позиционные звенья, дать определение звена. Идеальное усилительное (безынерционное) звено: уравнение, передаточная функция, характеристики, примеры.
- 38. Автоматизация процесса приготовления травяной муки на агрегате типа АВМ.
- 39. Позиционные звенья: назвать позиционные звенья, дать определение звена. Апериодическое звено 1-го порядка: уравнение, передаточная функция, характеристики, примеры.
- 40. Автоматизация, принципиальная и функциональная схемы автоматической системы регулирования температуры в электропарнике.
- 41. Позиционные звенья: назвать позиционные звенья, дать определение звена. Апериодическое звено 2-го порядка: уравнение, передаточная функция, характеристики, примеры.
- 42. Автоматизация, принципиальная и функциональная схемы автоматической системы управления температурно-влажностным режимом в теплице при

помощи оборудования ОРМ-1.

- 43. Позиционные звенья: назвать позиционные звенья, дать определение звена. Колебательное звено: уравнение, передаточная функция, характеристика, примеры.
- 44. Автоматизация, принципиальная схема автоматической системы управления электровозом подвесной дороги.
- 45. Интегрирующие звенья: дать определение звена, назвать интегрирующие звенья. Интегрирующее идеальное звено: уравнение, передаточная функция, характеристики, примеры.
- 46. Автоматизация, принципиальная и функциональная схемы автоматической системы управления электроприводом насосной станции.
- 47. Интегрирующие звенья: дать определение звена, назвать интегрирующие звенья. Реальное интегрирующее звено: уравнение, передаточная функция, характеристики, примеры.
- 48. Автоматизация, принципиальная и функциональная схемы автоматической системы управления частотой вращения электродвигателя постоянного тока.
- 49. Интегрирующие звенья: дать определение звена, назвать интегрирующие звенья. Изодромное звено 1-го порядка: уравнение, передаточная функция,
- 50. Автоматизация, принципиальная и функциональная схемы автоматической системы регулирования частоты вращения ротора асинхронного двигателя привода вентилятора.
- 51. Объекты управления: определение, свойства объектов управления, примеры.
- 52. Устойчивость линейных автоматических систем: определение, необходимое условие устойчивости.
- 53. Датчики частоты вращения: назначение, типы, характеристики, примеры.
- 54. Устойчивость автоматических систем: определение, алгебраические критерии устойчивости.
- 55. Технические средства автоматики: назначение, классификация.
- 56. Устойчивость автоматических систем: определение, частотные критерии устойчивости.
- 57. Измерительные устройства и датчики автоматических систем: назначение, классификация, структурные схемы преобразований.
- 58. Устойчивость автоматических систем: определение, оценка устойчивости систем по логарифмическим частотным характеристикам.
- 59. Структурные схемы автоматических систем: определение, назначение, правила составления и преобразования.

- 60. Чувствительные элементы температуры: назначение, классификация. Термопара: устройство, принцип действия, характеристики.
- 61. Передаточные функции автоматической системы: передаточная функция разомкнутой системы, передаточные функции замкнутой системы по задающему воздействию, по возмущению, по ошибке.
- 62. Чувствительные элементы температуры: назначение, классификация. Биметаллический и дилатометрический датчики температуры: устройство, принцип действия, характеристики.
- 63. Трансцендентные звенья: определение. Звено чистого запаздывания: уравнение, передаточная функция, характеристики, примеры.
- 64. Устойчивость автоматических систем: определение, влияние чистого запаздывания на устойчивость.
- 65. Правила получения передаточных функций типовых соединений линейных звеньев автоматических систем.
- 66. Устойчивость автоматических систем: определение, области устойчивости
- 67. Дифференцирующие звенья: дать определение звена, назвать дифференцирующие звенья. Идеальное дифференцирующее звено: уравнение, передаточная функция, характеристики, примеры.
- 68. Чувствительные элементы давления: назначение, классификация, принцип действия, характеристики.
- 69. Дифференцирующие звенья: дать определение звена, назвать дифференцирующие звенья. Реальное дифференцирующее звено: уравнение, передаточная функция, характеристики, примеры.
- 70. Чувствительные элементы уровня: назначение, классификация, принцип действия, характеристики.

3. Тесты для итоговых занятий модулей Укажите номер правильного ответа 1.

Переходная функция - это:

- 1) реакция на единичное ступенчатое воздействие;
- 2) реакция на гармонический входной сигнал;
- 3) реакция на произвольное входное воздействие;
- 4) отношение выходного сигнала к входному воздействию.

2. Передаточная функция вида

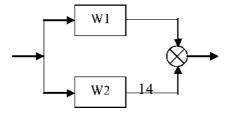
- 1) колебательного звена;
- 2) дифферинцирующего звена;
- 3) апериодического звена;
- 4) интегрирующего звена.

3. Элемент сравнения выполняет математическую операцию:

- 1) сложения;
- вычитания;
- 3) умножения;
- 4) деления;
- 5) логарифмирования.

4. Передаточная функция последовательного соединения динамических звеньев определяется как:

1) сумма передаточных функций звеньев;


W1 W2

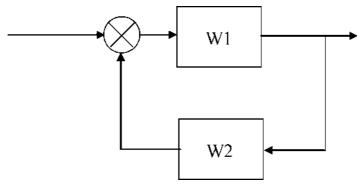
- 2) произведение передаточных функций звеньев;
- 3) разность передаточных функций звеньев.

5. Появление запаздывания в объекте, двухпозиционным регулятором с зоной неоднозначности приведет к:

- 1) появлению перерегулирования и уменьшению частоты переключения;
- 2) увеличению частоты переключения;
- 3) сохранению прежнего режима;

6. Передаточная функция параллельного соединения динамических звеньев определяется как:

- 1) сумма передаточных функций звеньев;
- 2) произведение передаточных функций звеньев;
- 3) разность передаточных функций звеньев.
- 7. Согласно критерию устойчивости Найквиста замкнутая система будет устойчива, если амплитудно-фазовая характеристика разомкнутой системы на комплексной плоскости не охватывает точку с координатами:
 - 1) (0; j0);
 - 2) (-i;j0);
 - 3) (1; j0);
 - 4) (i;ji);
 - 5) (-1; -ji).
- 8. Консервативное звено колебательное звено, у которого коэффициент демпфирования равен:
 - 1) $^{\wedge}$ = 0;
 - 5 = 0.5;
 - 3) \$ = 1;
 - 4) £>1.
- 9. Необходимое условие устойчивости заключается в том, что коэффициенты характеристического уравнения должны быть:
 - 1) разного знака;
 - 2) одного знака;
 - 3) равны нулю;
 - 4) равны.
- 10. Планируемое воздействие на систему регулирования осуществляют:
 - 1) изменением уставки;
 - 2) изменением параметров настройки регулятора;
 - 3) изменением знака обратной связи;
 - 4) изменением воздействия на объект.
- 11. Статическим является регулятор:
 - ПИ;
 - 1) ПИД;
 - 3) Π;
 - ИД;
- 12. По роду используемой энергии системы автоматизации могут быть:
 - 1) импульсными;
 - 2) гидравлическими;
 - 3) позиционными;
 - 4) статическими;

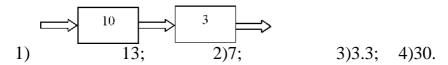

13. ЛАЧХ, показанная на рисунке, соответствует:

- 1) безинерционному звену;
 - 2) колебательному звену;
 - 3) апериодическому звену 1-го порядка;
 - 4) интегрирующему звену;
 - 5) апериодическому звену 2-го порядка.

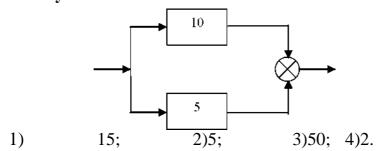
14. Необходимое условие устойчивости по критерию Гурвица заключается в том, что все его определители должны быть:

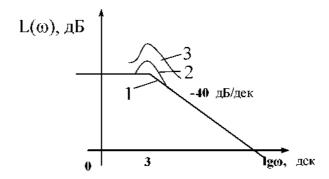
- 1) разного знака;
- 2) одного знака;
- 3) равны нулю;
- 4) одинаковы.

15. Соединение, изображенное на рисунке, относится:

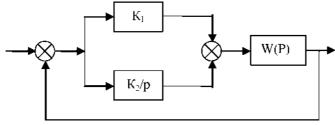


- 1) к последовательному соединению;
- 2) к параллельному соединению;
- 3) к соединению с отрицательной обратной связью;

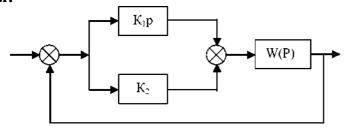

16. Обратная связь используется для принципа:


- 1) прямого управления;
- 2) по возмущению;
- 3) по отклонению;
- 4) по возмущению и отклонению.

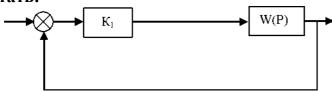
17. Общий коэффициент усиления системы, представленной на рисунке, равен:



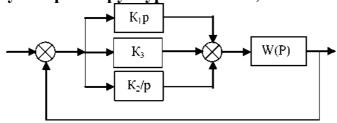
18. Общий коэффициент усиления системы, представленной на рисунке, соответствует:



- 19. ЛАЧХ с большим коэффициентом демпфирования соответствует график:
 - 1) 1; 2) 2;
 - 3) 3.
- 20. В САР с двухпозиционным регулятором при увеличении зоны неоднозначности частота переключения регулирующего органа;
 - 1) не изменится;
 - 2) уменьшится;
 - 3) возрастет.
- **21.** Логическая функция вида $F = X_x + X_2 + X_3$ на выходе будет иметь логический ноль при комбинации переменных XiX_2X_3 на входе:
 - 1) 000; 2) 001; 3)010; 4)011.
- 22. На рисунке приведена структурная схема:


- 1) пропорционального регулятора;
- 2) пропорционально-интегрального регулятора;
- 3) пропорционально-дифференциального регулятора;
- 4) пропорционально-интегрально-дифференциального регулятора.

23. Регулятор, структурная схема которого представлена на рисунке, является:

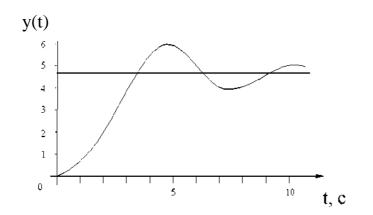

- 1) пропорциональным;
- 2) пропорционально-интегральным;
- 3) пропорционально-дифференциальным;
- 4) пропорционально-интегрально-дифференциальным.

24. Регулятор со структурной схемой, представленной на рисунке, можно считать:

- 1) пропорциональным;
- 2) пропорционально-интегральным;
- 3) пропорционально-дифференциальным;
- 4) пропорционально-интегрально-дифференциальным.

25. Регулятор со структурной схемой, показанной на рисунке, является :

- 1) пропорциональным;
- 2) пропорционально-интегральным;
- 3) пропорционально-дифференциальным;
- 4) пропорционально-интегрально-дифференциальным.


26. Амплитудно-фазовая частотная характеристика (АФЧХ) выражает зависимость:

- 1) амплитуды выходного сигнала от фазы;
- 2) амплитуды от частоты;
- 3) фазы от частоты;
- 4) амплитуды и фазы от частоты в комплексной форме.

27. При быстром изменении регулируемой величины на объектах управления с большим запаздыванием лучшее регулирование обеспечивает:

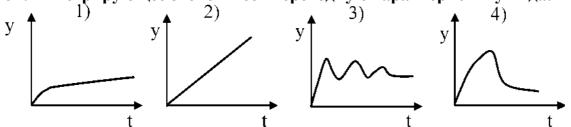
- 1) пропорциональный регулятор;
- 2) пропорционально-интегрально-дифференциальный регулятор;
- 3) пропорционально-интегральный регулятор;
- 4) интегральный регулятор.

28. На рисунке представлен график переходного процесса системы автоматического регулирования с относительным перерегулированием, равным:

- 1) 20 %;
- 2) 40 %;
- 3) 50 %;
- 4) 60 %.

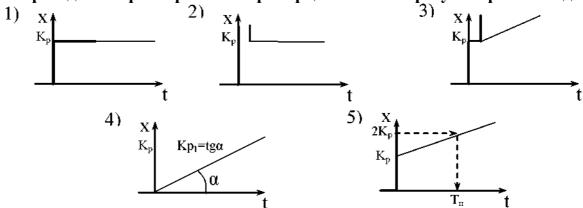
29. Двухпозиционный регулятор является:

- 1) нелинейным;
- 2) линейным
- 3) изодромным;
- 4) статическим.

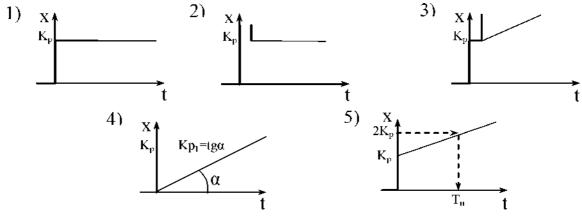

30. Основная обратная связь должна быть:

- 1) отрицательной;
- 2) положительной;
- 3) знак обратной связи зависит от требуемой точности регулирования;
- 4) знак обратной связи зависит от свойств объекта

31. Пропорциональный регулятор перемещает регулирующий орган на величину пропорционально:


- 1) отклонению регулируемой величины;
- 2) интегралу от сигнала рассогласования;
- 3) сумме отклонения и скорости отклонения;
- 4) сумме отклонения и интеграла от отклонения;
- 5) отклонению, интегралу и скорости отклонения.

32. Интегрирующее звено имеет переходную характеристику вида:



- 33. Пропорционально-интегральный регулятор перемещает регулирующий орган на величину пропорционально:
 - 1) отклонению регулируемой величины;
 - 2) интегралу от сигнала рассогласования;
 - 3) сумме отклонения и скорости отклонения;
 - 4) сумме отклонения и интеграла от отклонения;
 - 5) сумме отклонения, интеграла и скорости отклонения.

34. Переходная характеристика пропорционального регулятора выглядит:

Переходная характеристика

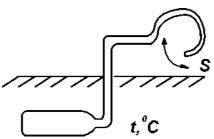
пропорционально-интегрального регулятора изображена:

- 35. Генераторные датчики преобразуют измеряемую неэлектрическую величину:
 - 1) в электродвижущую силу;
 - 2) в сопротивление;
 - 3) в частоту;

- 4) в емкость;
- 5) в индуктивность.

36. Для измерения динамических давлений используют:

- 1) угольные датчики;
- 2) потенциометрические датчики;
- 3) пьезоэлектрические датчики;
- 4) мембранные датчики.


37. Манометрический термометр предназначен для измерения:

- 1) давления;
- 2) разности давления;
- 3) температуры;
- 4) разряжения

38. Трехпрорводная схема подключения термосопротивления к измерительному мосту применяется для:

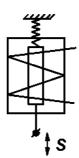
- 1) повышения чувствительности;
- 2) устранения погрешности, вызванной изменением температуры окружающей среды;
- 3) повышения надежности;
- 4) устранения внешних помех.

40. Манометрические термометры в динамическом отношении соответствуют:

- 1) безинерционным звеньям;
- 2) инерционным звеньям;
- 3) колебательным звеньям;
- 4) инерционным, а в отдельных случаях колебательным звеньям.

41. Ротаметр предназначен для измерения:

- 1) частоты вращения вала;
- 2) расхода жидкости или газа;
- 3) количества жидкости или газа;
- 4) уровня жидкости.


42. В расходомерах переменного перепада давлении участок трубы с диафрагмой устанавливают:

- 1) частоты вращения вала;
- 2) расхода жидкости или газа;
- 3) количество жидкости или газа;
- 4) уровня жидкости

43. Вибрацию якоря в электромагнитных исполнительных механизмах устраняют с помощью:

- 1) дополнительной обмотки; шунтирования обмотки дополнительным резистором;
- 3) заключением последовательно с обмоткой дополнительного сопротивления;
- 4) установки короткозамкнутого витка на полюсе электромагнита.

44. Приведенная схема поясняет принцип действия:

- 1) гидравлического исполнительного механизма с реализацией поступательного движения поршня;
- 2) гидравлического исполнительного механизма с реализацией вращательного движения поршня;
- 3) пневматического исполнительного механизма;
- 4) электродвигательного исполнительного механизма;
- 5) электромагнитного исполнительного механизма.

45. Дифференциальный манометр предназначен для измерения:

- 1) избыточного давления;
- 2) давления разряжения;
- 3) разности давлений;
- 4) вакуума.

46. С увеличением температуры сопротивление металлического терморезистора:

- 1 Увеличивается;
- 2) уменыпается;
- 3) не меняется;
- 4) изменение зависит от материала терморезистора;

4. Вопросы при проверке знаний практических занятий

- 1. Дайте определение автоматики.
- 2. Дайте определение автоматизации производственного процесса.
- з. В чем различие между механизацией процесса и автоматизацией?
- 4. В чем сущность принципа завершенности автоматизации?
- 5. В чем сущность принципа малооперационной технологии?
- 6. Какие бывают автоматизированные производства по видам компоновки оборудования?
- 7. Какие бывают автоматизированные производства по видам промежуточного транспорта?

- 8. Дайте определение производственного модуля.
- 9. Дайте определение производственной линии.
- 10. Чем отличается производственный участок от производственной линии?
- 11. Дайте определение ТАУ.
- 12. Дайте определение САУ.
- 13. Дайте определение объекта управления.
- 14. Дайте определение технологического параметра.
- 15. Что такое управление объектом?
- 16. Назовите виды воздействий на объект управления.
- 17. Чем отличается автоматизированный процесс от автоматического?
- 18. Что такое уровень автоматизации производства?
- 19. Назовите составляющие чертежной конструкторской документации.
- 20. Что содержит электромонтажный чертеж?
- 21. Что содержит монтажный чертеж?
- 22. Дайте определение конструкторской документации схемной.
- 23. Дайте определение структурной схемы САУ.
- 24. Дайте определение принципиальной схемы.
- 25. Дайте определение функциональной схемы.
- 26. Дайте определение схемы соединений (монтажной).
- 27. Дайте определение схемы подключения.
- 28. Дайте определения общей схемы САУ.
- 29. Дайте определения текстовой конструкторской документации.
- 30. Что называется системой автоматического управления?
- 31. Что является основной задачей автоматического управления?
- 32. Что называется управляемой величиной?
- 33. Что называется управляющим органом?
- 34. Что называется чувствительным элементом?
- 35. Что такое входная и выходная величины?
- 36. Что называется управляющим воздействием?
- 37. Что называется возмущением?
- 38. Что называется отклонением от заданной величины?
- 39. Что называется управляющим устройством?
- 40. Что называется задающим устройством?
- 41. Что называется функциональной схемой и из чего она состоит?
- 42. В чем отличие сигнала от физической величины?
- 43. В чем суть принципа разомкнутого управления?
- 44. В чем суть принципа компенсации?
- 45. В чем суть принципа обратной связи?
- 46. Что такое отрицательная обратная связь?
- 47. Перечислите достоинства и недостатки принципов управления?

- 48. Какой частный случай управления называется регулированием?
- 49. В чем отличие систем прямого и непрямого регулирования?
- 50. Дайте определение многоконтурной системы.
- 51. Дайте определение САУ стабилизации.
- 52. Дайте определение программной САУ.
- 53. Дайте определение следящей САУ.
- 54. Дайте определение самонастраивающейся САУ.
- 55. Что называется статическим режимом САУ?
- 56. Что называется статическими характеристиками САУ?
- 57. В каком случае статическая характеристика задается семейством кривых?
- 58. Что называется уравнением статики САУ?
- 59. Что называется коэффициентом передачи, в чем его отличие от коэффициента усиления?
- 60. В чем отличие нелинейных звеньев от линейных?
- 61. Как построить статическую характеристику нескольких звеньев?
- 62. В чем отличие астатических звеньев от статических?
- 63. В чем отличие астатического регулирования от статического?
- 64. Как сделать статическую САР астатической?
- 65. Что называется статической ошибкой регулятора, как ее уменьшить?
- 66. Что называется статизмом САР?
- 67. Назовите достоинства и недостатки статического и астатического регулирования?
- 68. Какой режим САУ называется динамическим?
- 69. Что называется регулированием?
- 70. Назовите возможные виды переходных процессов в САУ.
- 71. Что называется уравнением динамики?
- 72. Как провести теоретическое исследование динамики САУ?
- 73. Почему уравнение динамики САУ называется уравнением в отклонениях?
- 74. Справедлив ли для уравнения динамики САУ принцип суперпозиции?
- 75. Представьте звено с двумя и более входами схемой, состоящей из звеньев с одним входом?
- 76. Запишите линеаризованное уравнение динамики в обычной форме.
- 77. Какими свойствами обладает дифференциальный оператор р?
- 78. Что называется передаточной функцией звена?
- 79. Запишите линеаризованное уравнение динамики с использованием передаточной функции.
- 80. Что называется динамическим коэффициентом усиления звена?
- 81. Что называется характеристическим полиномом звена?
- 82. Что называется нулями и полюсами передаточной функции?
- 83. Что называется динамическим звеном?

- 84. Что называется структурной схемой САУ?
- 85. Что называется элементарными и типовыми динамическими звеньями?
- 86. Как сложную передаточную функцию разложить на передаточные функции типовых звеньев?
- 87. Запишите линеаризованное уравнение динамики в операторной форме.
- 88. Перечислите типичные схемы соединения звеньев САУ?
- 89. Как преобразовать цепь последовательно соединенных звеньев к одному звену?
- 90. Как преобразовать цепь параллельно соединенных звеньев к одному звену? Как преобразовать об

ратную связь к одному звену?

- 91. Что называется прямой цепью САУ?
- 92. Что называется разомкнутой цепью САУ?
- 93. Как перенести сумматор через звено по ходу и против движения сигнала?
- 94. Как перенести узел через звено по ходу и против движения сигнала?
- 95. Как перенести узел по ходу и против движения сигнала?
- 96. Как перенести сумматор через сумматор по ходу и против движения сигнала?
- 97. Как перенести узел через сумматор и сумматор через узел по ходу и против движения сигнала?
- 98. Что называется неэквивалентными участками линий связи в структурных схемах?
- 99. Как преобразовать обратную связь к одному звену?
- 100. Что называется и какие Вы знаете типовые входные воздействия? Для чего они нужны?
- 101. Что называется переходной характеристикой?
- 102. Что называется импульсной переходной характеристикой?
- 103. Дайте определение временной характеристики?
- 104. Как получить кривую переходного процесса при сложной форме входного воздействия, если известна переходная характеристика звена?
- 105. Что называется безынерционным звеном?
- 106. Назовите уравнение динамики безынерционного звена.
- 107. Назовите передаточную функцию безынерционного звена.
- 108. Назовите вид переходной характеристики безынерционного звена.
- 109. Что называется интегрирующим звеном?
- 110. Назовите уравнение динамики интегрирующего звена.
- 111. Назовите передаточную функцию интегрирующего звена.
- 112. Назовите вид переходной характеристики интегрирующего звена.
- 113. Что называется апериодическим звеном?
- 114. Назовите уравнение динамики апериодического звена.

- 115. Назовите передаточную функцию апериодического звена.
- 116. Назовите вид переходной характеристики апериодического звена.
- 117. Что называется колебательным звеном?
- 118. Назовите уравнение динамики колебательного звена.
- 119. Назовите передаточную функцию колебательного звена.
- 120. Назовите вид переходной характеристики колебательного звена
- 121. Почему не являются элементарными инерционные звенья второго порядка с коэффициентом затухания большим или равным единице?
- 122. Что называется реальным дифференцирующим звеном, его уравнение динамики, передаточная функция, вид переходной характеристики?
- 123. Что называется дифференцирующим звеном?
- 124. Назовите уравнение динамики дифференцирующего звена.
- 125. Назовите передаточную функцию дифференцирующего звена.
- 126. Назовите вид переходной характеристики дифференцирующего звена.
- 127. Что называется частотными характеристиками?
- 128. Как получить частотные характеристики теоретическим путем по известной передаточной функции зве

на?

- 129. Что такое и как получить АФЧХ?
- 130. Что такое и как получить ВЧХ?
- 131. Что такое и как получить МЧХ'?
- 132. Что такое и как получить AYX^9
- 133. Что такое и как получить $\Phi 4X^9$
- 134. Что такое и как получить ЛАЧХ⁹
- 135. Что такое и как получить ЛФЧХ?
- 136. Как построить годограф АФЧХ?
- 137. Постройте АФЧХ, ЛАЧХ и ЛФЧХ безынерционного звена.
- 138. Постройте АФЧХ, ЛАЧХ и ЛФЧХ интегрирующего звена.
- 139. Постройте АФЧХ, ЛАЧХ и ЛФЧХ апериодического звена.
- 140. Постройте АФЧХ, ЛАЧХ и ЛФЧХ колебательного звена.
- 141. Постройте АФЧХ, ЛАЧХ и ЛФЧХ консервативного звена.
- 142. Постройте ЛАЧХ и ЛФЧХ идеального дифференцирующего звена.
- 143. Постройте ЛАЧХ и ЛФЧХ идеального форсирующего звена.
- 144. Как изменятся ЛАЧХ и ЛФЧХ звена, если коэффициент усиления возрастет в 100 раз?
- 145. Что представляет собой разомкнутая одноконтурная САУ?
- 146. Почему для построения ЧХ разомкнутых одноконтурных САУ удобно пользоваться логарифмическими

характеристиками?

147. Чем отличается ЛФЧХ от ФЧХ?

- 148. Как изменится ЛАЧХ и ЛФЧХ разомкнутой одноконтурной САУ, если коэффициент усиления увеличить в 10 раз?
- 149. Что называется законом регулирования?
- 150. Что такое двухпозиционное регулирование?
- 151. Как реализовать пропорциональный закон регулирования?
- 152. Зачем в регулятор добавляют дифференцирующие звенья?
- 153. Зачем в регулятор добавляют интегрирующие звенья?
- 154. Что такое постоянная регулирования?
- 155. Дайте определение разгонной характеристики объекта.
- 156. Дайте определение Т-регулятора.
- 157. Как влияет постоянная регулирования на время выхода объекта на заданное значение регулируемой величины?
- 158. Какие условия оптимального применения П-регулятора?
- 159. Какие условия оптимального применения ПИ-регулятора?
- 160. Какие условия оптимального применения ПИД-регулятора?
- 161. Дайте определение емкости объекта.
- 162. Чем отличаются одноемкостной объект от многоемкостного?
- 163. Дайте определение времени разгона объекта.
- 164. 16 Дайте определение постоянной времени объекта.
- 165. Дайте определение чувствительности объекта.
- 166. Поясните понятие самовыравнивания.
- 167. Дайте определение запаздывания объекта.
- 168. Что понимают под устойчивостью САУ в малом и в большом?
- 169. Какой вид имеет решение уравнения динамики САУ?
- 170. Как найти вынужденную составляющую решения уравнения динамики CAV?
- 171. Какой вид имеет свободная составляющая решения уравнения динамики САУ?
- 172. Что такое характеристическое уравнение?
- 173. Какой вид имеют корни характеристического уравнения?
- 174. Чем отличаются правые и левые корни характеристического уравнения?
- 175. Сформулируйте условие устойчивости систем по Ляпунову.
- 176. Что такое граница устойчивости?
- 177. Что такое критерии устойчивости?
- 178. Сформулируйте необходимое условие устойчивости САУ.
- 179. Сформулируйте критерий Рауса.
- 180. Сформулируйте критерий Гурвица.
- 181. В чем достоинства и недостатки алгебраических критериев устойчивости?
- 182. Что называется частотными критериями устойчивости САУ?
- 183. В чем преимущество частотных критериев устойчивости перед

алгебраическими?

- 184. Сформулируйте критерий устойчивости Михайлова.
- 185. Сформулируйте критерий устойчивости Найквиста.
- 186. По каким величинам оценивают качество работы САУ?
- 187. Что такое статическая ошибка?
- 188. Что такое динамическая ошибка?
- 189. Дайте определение астатической системы.
- 190. Дайте определение статической системы.
- 191. Что такое время регулирования?
- 192. Что такое перерегулирование?
- 193. Что такое степень затухания?
- 194. Что понимают под обобщенным показателем качества работы САУ?
- 195. Дайте понятие апериодического процесса регулирования.
- 196. Дайте понятие колебательного процесса регулирования.
- 197. Как подобрать передаточную функцию корректирующего устройства при компенсации возмущающего воздействия?
- 198. Какие характерные задачи решаются при проектировании САУ?
- 199. Что называется синтезом САУ?
- 200. Как включаются корректирующие устройства?
- 201. Определите назначение диода.
- 202. Определите назначение транзистора.
- 203. Какие схемы включения транзистора вы знаете?
- 204. Определите назначение тиристора.
- 205. Определите назначение стабилитрона.
- 206. Определите назначение операционного усилителя.
- 207. Дайте определение коэффициента усиления операционного усилителя.
- 208. Что понимают под дифференциальным включением операционного усилителя?
- 209. Что понимают под входным сопротивлением операционного усилителя?
- 210. Что понимают под выходным сопротивлением операционного усилителя?
- 211. Какие материалы используют для изготовления полупроводниковых приборов?
- 212. Чем отличаются между собой неинвертирующий усилитель от инвертирующего?
- 213. Чему равен коэффициент усиления не инвертирующего усилителя?
- 214. Чему равен коэффициент усиления инвертирующего усилителя?
- 215. Поясните назначение обратной связи в усилителе.
- 216. Какова роль отрицательной обратной связи в усилителе?
- 217. Чему равно выходное напряжение дифференциального усилителя?
- 218. Чему равно напряжение выхода масштабирующего усилителя?

- 219. Нарисуйте схему суммирующего усилителя.
- 220. Какую роль играет конденсатор в цепи отрицательной обратной связи операционного усилителя?
- 221. Дайте определение компаратора.
- 222. Какова форма сигнала на выходе компаратора?
- 223. Дайте определение ЦАП.
- 224. Дайте определение АЦП.
- 225. Чему равно напряжение на выходе АЦП.
- 226. Что такое разрядность АЦП?
- 227. Нарисуйте схему возведения числа в квадрат на фоторезистивном оптроне.
- 228. Какие свойства электронных элементов используются в схемах моделирования люфта?
- 229. Какие свойства электронных элементов используются в схемах моделирования гистерезиса?
- 230. Какие свойства электронных элементов используются в схемах моделирования нелинейности?
- 231. Дайте определение комбинационным логическим устройствам.
- 232. Дайте определение цифровым автоматам.
- 233. Что такое двоичный код?
- 234. Какие элементарные действия имеются в алгебре логики?
- 235. Напишите правила дизъюнкции.
- 236. Напишите правила конъюнкции
- 237. Что такое инверсия?
- 238. Определите закон универсального множества.
- 239. Определите закон повторения.
- 240. Определите закон нулевого множества.
- 241. Определите переместительный закон.
- 242. Определите закон многократной инверсии.
- 243. Определите сочетательный закон.
- 244. Определите закон дополнительности.
- 245. Определите распределительный закон.
- 246. Определите закон поглощения.
- 247. Определите закон склеивания.
- 248. Определите закон Пирса.
- 249. Определите закон Шеффера.
- 250. На каких элементах выполняется схема И?
- 251. На каких элементах выполняется схема ИЛИ?
- 252. На каких элементах выполняется схема НЕ?
- 253. Дайте определение переключательной функции.
- 254. Для чего необходима минимизация переключающей функции?

- 255. Что такое таблица истинности?
- 256. Дайте определение триггера.
- 257. Дайте определение счетчика.
- 258. Какие виды триггеров вы знаете?
- 259. Какие виды счетчиков вы знаете?
- 260. Какими сигналами переключаются триггеры?
- 261. Дайте определение датчика.
- 262. Перечислите основные характеристики датчиков.
- 263. Что такое чувствительный элемент датчика?
- 264. Дайте определение диапазона измерений датчика
- 265. Дайте определение статической характеристики датчика.
- 266. Дайте определение коэффициенту чувствительности датчика.
- 267. Может ли быть коэффициент чувствительности переменной величиной?
- 268. Дайте определение точности датчика.
- 269. Дайте определение быстродействию датчика.
- 270. Дайте определение времени успокоения датчика.
- 271. Требует ли параметрический чувствительный элемент для своей работы дополнительного источника энергии?
- 272. Назовите основные недостатки механических чувствительных элементов.
- 273. Назовите вид входной величины, которая должна поступать на вход потенциометрического элемента.
- 274. Какие материалы могут использоваться в тензочувствительных элементах?
- 275. Какой параметр индуктивного чувствительного элемента изменяется при измерении перемещения объекта?
- 276. Назовите два типа индукционных преобразователей.
- 277. Почему сигнал индукционного преобразователя зависит от скорости перемещения ферромагнетика?
- 278. Какие параметры вещества должны измениться, чтобы на выходе емкостного чувствительного элемента появился полезный сигнал?
- 279. Опишите прямой пьезоэффект.
- 280. Опишите обратный пьезоэффект.
- 281. Опишите работу кварцевого генератора.
- 282. Назовите виды фотоэлектрических преобразователей.
- 283. Отчего зависит ток фотоэлектрического преобразователя?
- 284. Опишите работу фотоэлемента с внешним фотоэффектом.
- 285. Опишите работу с внутренним фотоэффектом.
- 286. В чем преимущество фотодиода, включенного по генераторной схеме?
- 287. Назовите разницу между светодиодом и оптроном.
- 288. Опишите принцип работы ПЗС-матрицы.
- 289. Поясните принцип действия термопары.

- 290. Поясните принцип действия терморезистора.
- 291. Для чего необходим холодный спай термопары?
- 292. Перечислите возможные виды элементов, чувствительных к температуре.
- 293. Из каких частей состоит биметаллический чувствительный элемент?
- 294. Каким образом термосопротивление может управлять частотой электронного генератора?
- 295. Какое свойство транзистора используется для измерения температуры?
- 296. Опишите схему включения транзистора в качестве датчика температуры.
- 297. Какое свойство емкостного преобразователя используется для измерения перемещения?
- 298. Опишите схему включения емкости в качестве датчика перемещения.
- 299. Для чего используются термоанемометры?
- 300. Опишите принцип действия термоанемометра постоянной температуры.
- 301. Какие свойства кристалла используют для построения датчика давления и силы?
- 302. Какие свойства кристалла используют для построения датчика влажности газов?
- 303. Каким образом можно зафиксировать появление предмета в зоне контроля?
- 304. Назовите чувствительные элементы с помощью которых можно измерить цвет?
- 305. Каковы требования к датчикам сельскохозяйственной автоматики?
- 306. Определите назначение задающего устройства.
- 307. Каким образом можно задать аналоговую величину?
- 308. Каким образом можно задать цифровую величину?
- 309. Опишите аналоговый потенциометрический задатчик
- 310. Опишите цифровой потенциометрический задатчик.
- 311. Опишите дискретный потенциометрический задатчик.
- 312. Опишите цифровой задатчик.
- 313. Для чего необходимо постоянное запоминающее устройство?
- 314. Для чего необходимо ОЗУ?
- 315. Поясните назначение сравнивающего устройства.
- 316. Какие элементы содержит аналоговое сравнивающее устройство?
- 317. Какие элементы содержит цифровое сравнивающее устройство?
- 318. Опишите устройство компаратора.
- 319. Дайте определение усилителя.
- 320. Назовите характеристики усилителя.
- 321. Какие типы усилителей вы знаете?
- 322. Усиливает ли усилитель постоянного тока переменный сигнал?
- 323. За счет чего происходит усиление тока в тиристорном усилителе?
- 324. Зависит ли коэффициент усиления в тиристорном усилителе от величины

- сопротивления нагрузки?
- 325. Дайте определение гидравлического усилителя.
- 326. Дайте назначение золотникового цилиндра.
- 327. Дайте назначение силового цилиндра.
- 328. За счет чего происходит усиление сигнала в гидравлическом усилителе?
- 329. Назовите недостатки пневматического усилителя в сравнении с гидравлическим.
- 330. Определите назначение исполнительных устройств.
- 331. Определите назначение рабочего органа.
- 332. Перечислите известные вам виды исполнительных устройств.
- 333. Перечислите известные вам виды рабочих органов.
- 334. Опишите принцип работы пневматических исполнительных устройств.
- 335. Назовите достоинства гидравлических исполнительных устройств.
- 336. Назовите недостатки гидравлических исполнительных устройств.
- 337. Назовите достоинства пневматических исполнительных устройств.
- 338. Назовите недостатки пневматических исполнительных устройств.
- 339. Из каких устройств состоит микропроцессор?
- 340. Для чего необходимо устройство обмена?
- 341. Что такое регистр?
- 342. Что такое микропрограммное устройство управления?
- 343. Что такое шина данных?
- 344. Что такое шина команд?
- 345. Каким устройством осуществляется координация работы блоками микропроцессора?
- 346. Для чего предназначено устройство обработки?
- 347. Какие арифметико-логические операции с данными выполняет устройство обработки?
- 348. Для чего необходимо устройство сопряжения с каналом?
- 349. Какие группы регистров существуют в микропроцессоре?
- 350. Для чего необходимы регистры, предназначенные для временного хранения данных?
- 351. Для чего необходимы регистры сегментов памяти?
- 352. Что такое сегментный регистр начального адреса?
- 353. Что такое обобщенный алгоритм работы микропроцессора?
- 354. Для чего необходим аккумулятор микропроцессора?
- 355. Для чего используются микроРС?
- 356. Какими дополнительными элементами должны быть снабжены датчики для подачи их сигнала в микропроцессор?
- 357. Определите назначение интерфейса в системе сбора информации с датчиков?

- 358. Почему для удаленных систем сбора информации целесообразно применять однокристальные микропроцессорные средства?
- зья. Как вы понимаете гибкость микропроцессорной системы сбора информации?
- з60. Перечислите узлы многофункционального микропроцессорного программируемого регулятора.
- 361. Перечислите функции входного преобразователя.
- 362. Зачем необходимо нормирование входных сигналов?
- з63. Через какой преобразователь подается входной сигнал в цифровое устройство?
- 364. Для чего служит выходной преобразователь?
- 365. Какие узлы содержит выходной преобразователь?
- 366. Определите назначение мультиплексора.
- 367. Какой тип дисплея вам больше нравится?
- 368. Определите назначение порта связи с внешними устройствами.
- 369. Как хранится в микропроцессорном регуляторе программа работы?
- 370. Каким образом вводятся в микропроцессорный регулятор установки?
- 371. Что необходимо предпринять для восстановления программы после исчезновения внешнего питания?
- 372. Какие законы регулирования можно отрабатывать в МПР-51?
- 373. Сколько входов имеет МПР-51?
- 374. Сколько выходов имеет МПР-51?
- 375. Сколько встроенных программ имеет прибор МПР-51?
- 376. Для чего в МПР-51 необходимы четыре компаратора "Тревога"?
- 377. Сколько пределов срабатывания имеет компаратор "Тревога"?